Suppr超能文献

风险的时空建模:通过法属圭亚那的气象和遥感数据加强登革热病毒控制

Spatiotemporal Modeling of Risk: Enhancing Dengue Virus Control through Meteorological and Remote Sensing Data in French Guiana.

作者信息

Bailly Sarah, Machault Vanessa, Beneteau Samuel, Palany Philippe, Fritzell Camille, Girod Romain, Lacaux Jean-Pierre, Quénel Philippe, Flamand Claude

机构信息

Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana.

Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France.

出版信息

Pathogens. 2024 Aug 29;13(9):738. doi: 10.3390/pathogens13090738.

Abstract

French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of larvae presence in local households in French Guiana. The model integrated field data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery, and meteorological data collected from September 2011 to February 2013 in an urban area of French Guiana. The identified environmental and meteorological factors were used to generate dynamic maps with high spatial and temporal resolution. The study collected larval data from 261 different surveyed houses, with each house being surveyed between one and three times. Of the observations, 41% were positive for the presence of larvae. We modeled the larvae risk within a radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-borne disease transmission risk, representing a major opportunity to monitor the evolution of vector risk and provide valuable information for public health authorities.

摘要

法属圭亚那缺乏一个专门针对其昆虫学背景开发预警系统的模型。我们采用了一种时空建模方法来预测法属圭亚那当地家庭中存在幼虫的风险。该模型整合了幼虫的实地数据、从高空间分辨率的昴星团卫星图像获得的环境数据,以及2011年9月至2013年2月在法属圭亚那一个城市地区收集的气象数据。所确定的环境和气象因素被用于生成具有高空间和时间分辨率的动态地图。该研究从261个不同的被调查房屋收集了幼虫数据,每个房屋被调查了一到三次。在这些观察结果中,41%的房屋发现有幼虫存在。我们使用六个解释变量对房屋周围50至200米半径范围内的幼虫风险进行建模,并将研究结果外推到法属圭亚那2020年登革热疫情期间的其他城市。这项研究突出了时空建模方法在预测和监测病媒传播疾病传播风险演变方面的潜力,这是监测病媒风险演变并为公共卫生当局提供有价值信息的一个重大机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9752/11435255/86ed945a686a/pathogens-13-00738-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验