Šostakaitė Laura, Šapranauskas Edvardas, Rudinskas Darius, Rimkus Arvydas, Gribniak Viktor
Department of Aeronautical Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Linkmenų Str. 28-4, 08217 Vilnius, Lithuania.
Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), Sauletekio Av. 11, 10223 Vilnius, Lithuania.
Polymers (Basel). 2024 Sep 14;16(18):2600. doi: 10.3390/polym16182600.
Fused filament fabrication, also known as fused deposition modeling and 3D printing, is the most common additive manufacturing technology due to its cost-effectiveness and customization flexibility compared to existing alternatives. It may revolutionize unmanned aerial vehicle (UAV) design and fabrication. Therefore, this study hypothesizes the 3D printing possibility of UAV using a simple desktop printer and polymeric material. The extensive literature analysis identified the acceptable prototyping object and polymeric material. Thus, the research focuses on applying polylactic acid (PLA) in manufacturing the flying wing-type UAV and develops a fabrication concept to replicate arial vehicles initially produced from a mixture of expanded polystyrene and polyethylene. The material choice stems from PLA's non-toxicity, ease of fabrication, and cost-effectiveness. Alongside ordinary PLA, this study includes lightweight PLA to investigate the mechanical performance of this advanced material, which changes its density depending on the printing temperature. This proof-of-concept study explores the mechanical properties of printed parts of the wing prototype. It also considers the possibility of fragmentation in fabricated objects because of the limitations of printing space. The simplified bending tests identified significant reserves in the mechanical performance regarding the theoretical resistance of the material in the wing prototype, which proves the raised hypothesis and delivers the object for further optimization. Focusing on the mechanical resistance, this study ignored rheology and durability issues, which require additional investigations. Fabricating the wing of the exact geometry reveals acceptable precision of the 3D printing processes but highlights the problematic technology issues requiring further resolution.
熔丝制造,也称为熔积成型和3D打印,是最常见的增材制造技术,因为与现有替代技术相比,它具有成本效益和定制灵活性。它可能会彻底改变无人机(UAV)的设计和制造。因此,本研究假设使用简单的桌面打印机和聚合物材料进行无人机3D打印的可能性。广泛的文献分析确定了可接受的原型对象和聚合物材料。因此,该研究专注于将聚乳酸(PLA)应用于制造飞翼式无人机,并开发一种制造概念,以复制最初由发泡聚苯乙烯和聚乙烯混合物制成的飞行器。材料的选择源于PLA的无毒、易于制造和成本效益。除了普通PLA,本研究还包括轻质PLA,以研究这种先进材料的机械性能,其密度会根据打印温度而变化。这项概念验证研究探索了机翼原型打印部件的机械性能。它还考虑了由于打印空间限制而导致制造物体出现碎片的可能性。简化的弯曲试验确定了机翼原型中材料理论抗性方面机械性能的显著储备,这证明了提出的假设,并为进一步优化提供了对象。本研究专注于机械抗性,忽略了流变学和耐久性问题,这些问题需要进一步研究。制造精确几何形状的机翼揭示了3D打印过程可接受的精度,但突出了需要进一步解决的技术问题。