Zhu Wen, Wilcoxen Jarett, Britt R David, Richards Nigel G J
Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States.
Department of Chemistry, University of California , Davis, California 95616, United States.
Biochemistry. 2016 Jan 26;55(3):429-34. doi: 10.1021/acs.biochem.5b01340. Epub 2016 Jan 11.
Oxalate decarboxylase (OxDC) catalyzes the disproportionation of oxalic acid monoanion into CO2 and formate. The enzyme has long been hypothesized to utilize dioxygen to form mononuclear Mn(III) or Mn(IV) in the catalytic site during turnover. Recombinant OxDC, however, contains only tightly bound Mn(II), and direct spectroscopic detection of the metal in higher oxidation states under optimal catalytic conditions (pH 4.2) has not yet been reported. Using parallel mode electron paramagnetic resonance spectroscopy, we now show that substantial amounts of Mn(III) are indeed formed in OxDC, but only in the presence of oxalate and dioxygen under acidic conditions. These observations provide the first direct support for proposals in which Mn(III) removes an electron from the substrate to yield a radical intermediate in which the barrier to C-C bond cleavage is significantly decreased. Thus, OxDC joins a small list of enzymes capable of stabilizing and controlling the reactivity of the powerful oxidizing species Mn(III).
草酸脱羧酶(OxDC)催化草酸单阴离子歧化为二氧化碳和甲酸。长期以来,人们一直假设该酶在催化过程中利用氧气在催化位点形成单核Mn(III)或Mn(IV)。然而,重组OxDC仅含有紧密结合的Mn(II),在最佳催化条件(pH 4.2)下,尚未有关于更高氧化态金属的直接光谱检测报道。我们现在使用平行模式电子顺磁共振光谱表明,在OxDC中确实形成了大量的Mn(III),但仅在酸性条件下草酸盐和氧气存在时才会形成。这些观察结果首次直接支持了以下观点:Mn(III)从底物中移除一个电子以产生自由基中间体,其中C-C键断裂的势垒显著降低。因此,OxDC加入了一小类能够稳定和控制强氧化物种Mn(III)反应性的酶的行列。