Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Carretera Yautepec-Jojutla s/n-Km 85, San Isidro, Yautepec 62739, Morelos, Mexico.
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu Esq. Miguel Stampa s/n, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07728, Mexico.
Molecules. 2024 Sep 18;29(18):4421. doi: 10.3390/molecules29184421.
Triacontanol is a long-chain primary alcohol derived from policosanol, known for its diverse biological activities, including functioning as a plant growth regulator and exhibiting anti-inflammatory and antitumoral effects. However, its application is limited due to its high hydrophobicity, resulting in poor absorption and reduced therapeutic effectiveness. A potential solution to this problem is the use of niosomes. Niosomes are carriers composed of non-ionic surfactants, cholesterol, charge-inducing agents, and a hydration medium. They are effective in encapsulating drugs, improving their solubility and bioavailability. The objective of this study was to optimize and synthesize nano-niosomes for the encapsulation of triacontanol. Niosomes were synthesized using a thin-film hydration method combined with ultrasonication, following a Box-Behnken design. Niosomes were characterized using various techniques including dynamic light scattering, Fourier-transform infrared spectroscopy (FTIR), confocal microscopy, high-resolution scanning electron microscopy, and transmission electron microscopy (TEM). Formulation 14 of niosomes achieved the desired size, polydispersity index (0.198 ± 0.008), and zeta potential (-31.28 ± 1.21). FTIR analysis revealed a characteristic signal in the 3400-300 cm range, indicating intermolecular interactions due to a bifurcated hydrogen bond between cholesterol and S60. Confocal microscopy confirmed the presence of triacontanol through Nile Red fluorescence. TEM revealed the spherical structure of niosomes.
三十烷醇是一种长链伯醇,来源于植物醇,具有多种生物学活性,可用作植物生长调节剂,具有抗炎和抗肿瘤作用。但是,由于其高度疏水性,导致吸收不良,治疗效果降低,其应用受到限制。解决此问题的一种潜在方法是使用非离子囊泡。非离子囊泡由非离子表面活性剂、胆固醇、电荷诱导剂和水合介质组成的载体。它们可有效包裹药物,提高药物的溶解度和生物利用度。本研究的目的是优化并合成纳米非离子囊泡来包裹三十烷醇。采用薄膜水化法结合超声法,根据 Box-Behnken 设计合成非离子囊泡。使用动态光散射、傅里叶变换红外光谱(FTIR)、共聚焦显微镜、高分辨率扫描电子显微镜和透射电子显微镜(TEM)等多种技术对非离子囊泡进行表征。非离子囊泡配方 14 达到了所需的粒径、多分散指数(0.198±0.008)和 zeta 电位(-31.28±1.21)。FTIR 分析表明,在 3400-300cm 范围内存在特征信号,表明胆固醇和 S60 之间的分叉氢键导致了分子间相互作用。共聚焦显微镜通过尼罗红荧光证实了三十烷醇的存在。TEM 显示了非离子囊泡的球形结构。