Suppr超能文献

基于改进YOLOv8的草莓叶病害自动检测

Automatic Disease Detection from Strawberry Leaf Based on Improved YOLOv8.

作者信息

He Yuelong, Peng Yunfeng, Wei Chuyong, Zheng Yuda, Yang Changcai, Zou Tengyue

机构信息

College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Fujian Key Laboratory of Agricultural Information Sensoring Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

出版信息

Plants (Basel). 2024 Sep 11;13(18):2556. doi: 10.3390/plants13182556.

Abstract

Strawberries are susceptible to various diseases during their growth, and leaves may show signs of diseases as a response. Given that these diseases generate yield loss and compromise the quality of strawberries, timely detection is imperative. To automatically identify diseases in strawberry leaves, a KTD-YOLOv8 model is introduced to enhance both accuracy and speed. The KernelWarehouse convolution is employed to replace the traditional component in the backbone of the YOLOv8 to reduce the computational complexity. In addition, the Triplet Attention mechanism is added to fully extract and fuse multi-scale features. Furthermore, a parameter-sharing diverse branch block (DBB) sharing head is constructed to improve the model's target processing ability at different spatial scales and increase its accuracy without adding too much calculation. The experimental results show that, compared with the original YOLOv8, the proposed KTD-YOLOv8 increases the average accuracy by 2.8% and reduces the floating-point calculation by 38.5%. It provides a new option to guide the intelligent plant monitoring system and precision pesticide spraying system during the growth of strawberry plants.

摘要

草莓在生长过程中易受多种病害影响,叶片可能会出现病害症状作为反应。鉴于这些病害会导致产量损失并影响草莓品质,及时检测至关重要。为了自动识别草莓叶片上的病害,引入了KTD-YOLOv8模型以提高准确性和速度。采用内核仓库卷积来替换YOLOv8主干中的传统组件,以降低计算复杂度。此外,添加了三重注意力机制以充分提取和融合多尺度特征。此外,构建了一个参数共享的多样分支块(DBB)共享头,以提高模型在不同空间尺度上的目标处理能力,并在不增加过多计算量的情况下提高其准确性。实验结果表明,与原始的YOLOv8相比,所提出的KTD-YOLOv8平均准确率提高了2.8%,浮点计算减少了38.5%。它为草莓植株生长期间的智能植物监测系统和精准农药喷洒系统提供了新的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e63/11435351/baf2304acad7/plants-13-02556-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验