Suppr超能文献

使用长读长测序技术对废水样本中新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)突变和谱系进行无监督检测。

Unsupervised detection of novel SARS-CoV-2 mutations and lineages in wastewater samples using long-read sequencing.

作者信息

Garcia Ignacio, Riis Rasmus K, Moen Line V, Rohringer Andreas, Madslien Elisabeth H, Bragstad Karoline

机构信息

Department of Bacteriology, Norwegian Institute of Public Health, Oslo, 0456, Norway.

Department of Virology, Norwegian Institute of Public Health, Oslo, 0456, Norway.

出版信息

BMC Genomics. 2025 Jan 29;26(1):87. doi: 10.1186/s12864-025-11255-z.

Abstract

The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on updated genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene. HERCULES identifies and quantifies mutations and lineages without requiring database-guided deconvolution, enhancing the detection of novel variants.We evaluated HERCULES on Norwegian wastewater samples collected from July 2022 to October 2023 as part of a national pilot on WBE of SARS-CoV-2. Strong correlations were observed between wastewater and clinical sample data in terms of prevalence of mutations and lineages. Furthermore, we found that SARS-CoV-2 trends in wastewater samples were identified one week earlier than in clinical data.Our results demonstrate HERCULES' capability to identify new lineages before their detection in clinical samples, providing early warnings of potential outbreaks. The methodology described in this paper is easily adaptable to other pathogens, offering a versatile tool for environmental surveillance of new emerging pathogens.

摘要

新冠疫情凸显了病毒监测在公共卫生中的重要性,基于污水的流行病学(WBE)已成为一种在社区层面监测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)及其变体的非侵入性、经济高效的方法。不幸的是,当前的变体监测方法在很大程度上依赖于更新的基因组数据库,这些数据库的数据来自临床样本,随着临床检测和测序工作的减少,其敏感性和代表性可能会降低。在本文中,我们介绍了HERCULES(用于从环境中的SARS-CoV-2中发现谱系的高通量流行病学重建和聚类),这是一种无监督方法,它使用刺突基因单个1千碱基片段的长读长测序。HERCULES无需数据库引导的去卷积即可识别和量化突变及谱系,增强了对新变体的检测能力。作为一项关于SARS-CoV-2的WBE全国试点项目的一部分,我们对2022年7月至2023年10月从挪威收集的污水样本进行了HERCULES评估。在突变和谱系的流行率方面,污水样本与临床样本数据之间观察到了很强的相关性。此外,我们发现污水样本中的SARS-CoV-2趋势比临床数据早一周被识别出来。我们的结果证明了HERCULES在临床样本检测之前识别新谱系的能力,为潜在疫情提供了早期预警。本文描述的方法很容易适用于其他病原体,为新兴病原体的环境监测提供了一种通用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8898/11780762/2e2bada59073/12864_2025_11255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验