Suppr超能文献

基于肿瘤微环境的口咽鳞状细胞癌风险分层

Tumor Microenvironment-Based Risk Stratification of Oropharyngeal Squamous Cell Carcinoma.

作者信息

Almangush Alhadi, Jouhi Lauri, Haglund Caj, Hagström Jaana, Mäkitie Antti A, Leivo Ilmo

机构信息

Department of Pathology, University of Helsinki, Helsinki, Finland.

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

出版信息

Head Neck. 2025 Feb;47(2):599-605. doi: 10.1002/hed.27945. Epub 2024 Sep 28.

Abstract

BACKGROUND

Evaluation of the prognostic impact of tumor microenvironment (TME) has received attention in recent years. We introduce a TME-based risk stratification for oropharyngeal squamous cell carcinoma (OPSCC).

MATERIAL AND METHODS

A total of 182 patients treated for OPSCC at the Helsinki University Hospital were included. TME-based risk stratification was designed combining tumor-stroma ratio and stromal tumor-infiltrating lymphocytes assessed in hematoxylin and eosin-stained sections.

RESULTS

In multivariable analysis, TME-based risk stratification associated with poor disease-free survival with a hazard ratio (HR) of 2.68 (95% CI 1.11-6.48, p = 0.029). In addition, the proposed risk stratification was associated with poor disease-specific survival (HR 2.687, 95% CI 1.28-5.66, p = 0.009) and poor overall survival (HR 2.21, 95% CI 1.23-3.99, p = 0.008).

CONCLUSION

Our TME-based risk stratification provides a powerful prognostic tool that can be used in daily treatment planning of OPSCC together with tumor-related prognostic markers.

摘要

背景

近年来,肿瘤微环境(TME)的预后影响评估受到关注。我们介绍一种基于TME的口咽鳞状细胞癌(OPSCC)风险分层方法。

材料与方法

纳入了在赫尔辛基大学医院接受治疗的182例OPSCC患者。基于TME的风险分层设计为结合苏木精-伊红染色切片中评估的肿瘤-基质比和基质肿瘤浸润淋巴细胞。

结果

在多变量分析中,基于TME的风险分层与无病生存期差相关,风险比(HR)为2.68(95%CI 1.11-6.48,p = 0.029)。此外,所提出的风险分层与疾病特异性生存期差(HR 2.687,95%CI 1.28-5.66,p = 0.009)和总生存期差(HR 2.21,95%CI 1.23-3.99,p = 0.008)相关。

结论

我们基于TME的风险分层提供了一种强大的预后工具,可与肿瘤相关预后标志物一起用于OPSCC的日常治疗规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c213/11717971/11c9063c734b/HED-47-599-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验