Suppr超能文献

一种基于大语言模型的急诊科晕厥识别临床决策支持系统:临床工作流程整合框架。

A large language model-based clinical decision support system for syncope recognition in the emergency department: A framework for clinical workflow integration.

作者信息

Levra Alessandro Giaj, Gatti Mauro, Mene Roberto, Shiffer Dana, Costantino Giorgio, Solbiati Monica, Furlan Raffaello, Dipaola Franca

机构信息

Department of Cardiovascular Medicine, Humanitas Research Hospital, IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

IBM, Milan, Italy.

出版信息

Eur J Intern Med. 2025 Jan;131:113-120. doi: 10.1016/j.ejim.2024.09.017. Epub 2024 Sep 28.

Abstract

Differentiation of syncope from transient loss of consciousness can be challenging in the emergency department (ED). Natural Language Processing (NLP) enables the analysis of free text in the electronic medical records (EMR). The present paper aimed to develop a large language models (LLM) for syncope recognition in the ED and proposed a framework for model integration within the clinical workflow. Two models, based on both the Italian and Multilingual Bidirectional Encoder Representations from Transformers (BERT) language model, were developed using consecutive EMRs. The "triage" model was only based on notes contained in the "triage" section of the EMR. The "anamnesis" model added data contained in the "medical history" section. Interpretation and calibration plots were generated. The Italian and Multi BERT models were developed and tested on both 15,098 and 15,222 EMRs, respectively. The triage model had an AUC of 0·95 for the Italian BERT and 0·94 for the Multi BERT. The anamnesis model had an AUC of 0·98 for the Italian BERT and 0·97 for Multi BERT. The LLM identified syncope when not explicitly mentioned in the EMR and also recognized common prodromal symptoms preceding syncope. Both models identified syncope patients in the ED with a high discriminative capability from nurses and doctors' notes, thus potentially acting as a tool helping physicians to differentiate syncope from others transient loss of consciousness.

摘要

在急诊科,区分晕厥和短暂意识丧失可能具有挑战性。自然语言处理(NLP)能够分析电子病历(EMR)中的自由文本。本文旨在开发一种用于急诊科晕厥识别的大语言模型(LLM),并提出一个在临床工作流程中进行模型整合的框架。基于意大利语和来自Transformer的多语言双向编码器表征(BERT)语言模型开发了两个模型,使用连续的电子病历。“分诊”模型仅基于电子病历“分诊”部分中的记录。“病史”模型增加了“病史”部分中的数据。生成了解释和校准图。意大利语和多语言BERT模型分别在15098份和15222份电子病历上进行了开发和测试。分诊模型对于意大利语BERT的AUC为0.95,对于多语言BERT为0.94。病史模型对于意大利语BERT的AUC为0.98,对于多语言BERT为0.97。该大语言模型在电子病历未明确提及晕厥时能够识别晕厥,还能识别晕厥前的常见前驱症状。两个模型都能从护士和医生的记录中以高辨别能力识别急诊科的晕厥患者,因此有可能作为一种工具帮助医生区分晕厥和其他短暂意识丧失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验