Department of Electrical and Electronic Engineering, Hanyang University, Ansan, Korea.
Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul, Korea.
J Korean Med Sci. 2021 Jul 12;36(27):e175. doi: 10.3346/jkms.2021.36.e175.
Rapid triage reduces the patients' stay time at an emergency department (ED). The Korean Triage Acuity Scale (KTAS) is mandatorily applied at EDs in South Korea. For rapid triage, we studied machine learning-based triage systems composed of a speech recognition model and natural language processing-based classification.
We simulated 762 triage cases that consisted of 18 classes with six types of the main symptom (chest pain, dyspnea, fever, stroke, abdominal pain, and headache) and three levels of KTAS. In addition, we recorded conversations between emergency patients and clinicians during the simulation. We used speech recognition models to transcribe the conversation. Bidirectional Encoder Representation from Transformers (BERT), support vector machine (SVM), random forest (RF), and k-nearest neighbors (KNN) were used for KTAS and symptom classification. Additionally, we evaluated the Shapley Additive exPlanations (SHAP) values of features to interpret the classifiers.
The character error rate of the speech recognition model was reduced to 25.21% through transfer learning. With auto-transcribed scripts, support vector machine (area under the receiver operating characteristic curve [AUROC], 0.86; 95% confidence interval [CI], 0.81-0.9), KNN (AUROC, 0.89; 95% CI, 0.85-0.93), RF (AUROC, 0.86; 95% CI, 0.82-0.9) and BERT (AUROC, 0.82; 95% CI, 0.75-0.87) achieved excellent classification performance. Based on SHAP, we found "", "", "", "", "" and "" were the important vocabularies for determining KTAS and symptoms.
We demonstrated the potential of an automatic KTAS classification system using speech recognition models, machine learning and BERT-based classifiers.
快速分诊可减少患者在急诊科(ED)的停留时间。韩国的分诊 acuity 量表(KTAS)在韩国的 ED 中强制使用。对于快速分诊,我们研究了基于机器学习的分诊系统,该系统由语音识别模型和基于自然语言处理的分类组成。
我们模拟了 762 例分诊病例,这些病例由 18 个类别组成,有六种主要症状(胸痛、呼吸困难、发热、中风、腹痛和头痛)和三个 KTAS 级别。此外,我们记录了模拟过程中急诊患者和临床医生之间的对话。我们使用语音识别模型将对话转录下来。我们使用双向编码器表示转换器(BERT)、支持向量机(SVM)、随机森林(RF)和 K 最近邻(KNN)来进行 KTAS 和症状分类。此外,我们评估了特征的 Shapley Additive exPlanations(SHAP)值,以解释分类器。
通过迁移学习,语音识别模型的字符错误率降低到 25.21%。使用自动转录脚本,支持向量机(AUROC,0.86;95%置信区间[CI],0.81-0.9)、KNN(AUROC,0.89;95%CI,0.85-0.93)、RF(AUROC,0.86;95%CI,0.82-0.9)和 BERT(AUROC,0.82;95%CI,0.75-0.87)均实现了出色的分类性能。基于 SHAP,我们发现“”、“”、“”、“”、“”和“”是确定 KTAS 和症状的重要词汇。
我们使用语音识别模型、机器学习和基于 BERT 的分类器展示了自动 KTAS 分类系统的潜力。