Suppr超能文献

无人机群中无序状态的可解释机器学习模型。

Explainable machine learning model of disorganisation in swarms of drones.

作者信息

Gackowska-Kątek Marta, Cofta Piotr

机构信息

Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796, Bydgoszcz, Poland.

出版信息

Sci Rep. 2024 Sep 28;14(1):22519. doi: 10.1038/s41598-024-73220-2.

Abstract

The main challenges when managing a fleet of unmanned aerial vehicles are to ensure the relative stability of its formation and to minimise disorganisation, specifically when undergoing an intrusion. When planning the mission it is beneficial for the operator to set the parameters of the formation to balance the needs of the mission with the disorganisation that an intruder may cause. The model developed in this research predicts the anticipated disturbance as a function of the parameters of the formation. The effectiveness of six machine learning methods are compared with a previously established baseline, using data obtained from simulations. CatBoost (categorical boosting) delivered the best results, with an (coefficient of determination) value of 83.3%, representing an improvement of 80% over the baseline. The SHAP (Shapley Additive Explanations) method was used to extend the model beyond predictability for particular combinations of values of parameters, towards generalised recommendations for the operator of the formation.

摘要

管理无人机机队时的主要挑战在于确保其编队的相对稳定性,并尽量减少混乱,尤其是在遭遇入侵时。在规划任务时,对操作员来说,设定编队参数以平衡任务需求与入侵者可能造成的混乱是有益的。本研究中开发的模型将预期干扰预测为编队参数的函数。使用从模拟中获得的数据,将六种机器学习方法的有效性与先前建立的基线进行了比较。CatBoost(分类提升)取得了最佳结果,决定系数值为83.3%,比基线提高了80%。SHAP(Shapley加法解释)方法用于将模型从特定参数值组合的可预测性扩展到为编队操作员提供的通用建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83d/11439078/84406016d962/41598_2024_73220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验