Suppr超能文献

从临床 12 导联心电图生成心脏电生理学数字孪生的框架。

A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs.

机构信息

Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.

Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria.

出版信息

Med Image Anal. 2021 Jul;71:102080. doi: 10.1016/j.media.2021.102080. Epub 2021 Apr 22.

Abstract

Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.

摘要

心脏数字孪生(Cardiac Digital Twin (CDT))是指基于临床数据构建的患者心脏数字复制品,与所有可用的临床观察结果完全匹配。由于其具有内在的预测潜力,CDT 作为一种辅助临床决策的补充手段,以及用于新型电生理设备治疗的经济高效、安全和伦理测试手段,具有很高的应用前景。然而,目前 CDT 生成过程中的解剖学和功能孪生阶段的工作流程,即从临床数据中推断模型解剖结构和参数,在高级临床和工业应用方面还不够高效、稳健和准确。我们的研究通过引入以下方法,解决了阻碍高保真 CDT 常规生成的三个主要限制:

  1. 全面的参数向量,其中包含与心室电生理相关的所有因素;

  2. 模型中的抽象参考框架,允许无人为干预地操作模型参数场;

  3. 一种新颖的快速心电图(Electrocardiogram (ECG))模型,用于高效且生物物理详细的参数推断模拟。

然后,我们引入了一种新的 CDT 生成工作流程,作为初步的概念验证。在合理的时间内(<4 小时),我们对 12 名从临床获得的磁共振图像中提取的受试者进行了解剖学孪生操作。在对基础快速向前 ECG 模型与黄金标准双域 ECG 模型进行评估之后,根据临床获得的 12 导联 ECG ,使用正向 Saltelli 抽样方法,对单个受试者进行了最佳参数的功能孪生操作。就效率和保真度而言,我们实现的结果表明,我们的工作流程非常适合并且能够大规模生成生物物理详细的 CDT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验