Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Water Res. 2024 Dec 1;267:122525. doi: 10.1016/j.watres.2024.122525. Epub 2024 Sep 25.
Dissolved oxygen (DO) is a fundamental requirement for the survival of aquatic organisms, which plays a crucial role in shaping the structure and functioning of aquatic ecosystems. However, the long-term DO change in global lakes remains unknown due to limited available data. To address this gap, we integrate Landsat data and geographic features to develop DO estimation models for global lakes using machine learning approaches. The results demonstrated that the trained random forest (RF) model has better performance (R = 0.72, and RMSE = 1.24 mg/L) than artificial neural network (ANN) (R = 0.66, and RMSE = 1.39 mg/L), support vector machine regression (SVR) (R = 0.62, and RMSE = 1.45 mg/L) and extreme gradient boosting (XGBoost) (R = 0.72, and RMSE = 1.29 mg/L). Then, we used the trained RF model to reveal the DO long-term (1984-2021) change in surface water (epilimnetic) of 351,236 global lakes with water area ≥ 0.1 km. The results show that the average epilimnetic DO concentration of global lake was 9.72 ± 1.07 mg/L, with higher DO in the polar regions (latitude > 66.56 °) (10.87 ± 0.54 mg/L) and lower in the equatorial regions (-5 ° < latitude < 5 °) (6.29 ± 0.63 mg/L). We also find widespread deoxygenation in surface water of global lakes, with a rate of - 0.036 mg/L per decade. Meanwhile, the number of lakes and surface area that experiencing DO stress are continuously increasing, with rate of 39 and 212.85 km, respectively. Our results offer a comprehensive dataset of DO variation spanning nearly 40 years, furnishing valuable insights for formulating effective management strategies, and enhancing the maintenance of the health of aquatic ecosystems.
溶解氧(DO)是水生生物生存的基本要求,它在塑造水生生态系统的结构和功能方面起着至关重要的作用。然而,由于可用数据有限,全球湖泊的长期 DO 变化仍不清楚。为了解决这一差距,我们整合了 Landsat 数据和地理特征,利用机器学习方法为全球湖泊开发 DO 估算模型。结果表明,经过训练的随机森林(RF)模型比人工神经网络(ANN)(R = 0.66,RMSE = 1.39 mg/L)、支持向量机回归(SVR)(R = 0.62,RMSE = 1.45 mg/L)和极端梯度提升(XGBoost)(R = 0.72,RMSE = 1.29 mg/L)具有更好的性能(R = 0.72,RMSE = 1.24 mg/L)。然后,我们使用经过训练的 RF 模型来揭示 351,236 个全球湖泊水面(真光层)的 DO 长期(1984-2021 年)变化,这些湖泊的面积≥0.1 km。结果表明,全球湖泊的真光层 DO 浓度平均值为 9.72 ± 1.07 mg/L,极地区域(纬度>66.56°)的 DO 较高(10.87 ± 0.54 mg/L),赤道地区(-5°<纬度<5°)的 DO 较低(6.29 ± 0.63 mg/L)。我们还发现全球湖泊的水面普遍出现缺氧现象,每十年 DO 减少 0.036 mg/L。同时,经历 DO 胁迫的湖泊数量和面积也在不断增加,分别为 39 个和 212.85 km。我们的研究结果提供了一个近 40 年 DO 变化的综合数据集,为制定有效的管理策略和维护水生生态系统的健康提供了有价值的见解。