Ningbo Haishu People's Hospital, Ningbo, Zhejiang 315000, China.
Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
Int J Biol Macromol. 2024 Nov;280(Pt 4):136106. doi: 10.1016/j.ijbiomac.2024.136106. Epub 2024 Sep 27.
Engineered matrices with aligned microarchitectures are pivotal in regulating the fibroblast-to-myofibroblast transition, a critical process for wound healing and scar reduction. However, developing a three-dimensional (3D) aligned matrix capable of effectively controlling this transition remains challenging. Herein, we developed a cell-adaptive hydrogel with highly oriented microporous structures, fabricated through bioprinting of thermo/ion/photo-crosslinked gelatin methacrylate/sodium alginate (GelMA/SA) incorporating shear-oriented polyethylene oxide (PEO) filler. The synergistic interactions among GelMA, PEO, and SA yield a homogeneous mixture conducive to the printing of biomimetic 3D constructs with anisotropic micropores. These anisotropic micropores, along with the biochemical cues provided by the GelMA/PEO/SA scaffolds, enhance the oriented spreading and organization of fibroblasts. The resultant spread and aligned cellular morphologies promote the transition of fibroblasts into myofibroblasts. By co-culturing human keratinocytes on the engineered dermal layer, we successfully create a bilayer skin construct, wherein the keratinocytes establish tight junctions accompanied by elevated expression of cytokeratin-14, while the fibroblasts display a highly spread morphology with increased fibronectin expression. The printed hydrogels accelerate full-thickness wound closure by establishing a bioactive microenvironment that mitigate inflammation and stimulate angiogenesis, myofibroblast transition, and extracellular matrix remodeling. This anisotropic hydrogel demonstrates substantial promise for applications in skin tissue engineering.
具有定向微结构的工程基质在调节成纤维细胞向肌成纤维细胞转化中起着关键作用,这是伤口愈合和减少疤痕的关键过程。然而,开发能够有效控制这种转化的三维(3D)定向基质仍然具有挑战性。在此,我们开发了一种具有高度定向微孔结构的细胞适应性水凝胶,通过热/离子/光交联明胶甲基丙烯酸酯/海藻酸钠(GelMA/SA)的生物打印来制造,其中包含剪切定向的聚氧化乙烯(PEO)填料。GelMA、PEO 和 SA 之间的协同相互作用产生了有利于打印具有各向异性微孔的仿生 3D 结构的均匀混合物。这些各向异性微孔以及 GelMA/PEO/SA 支架提供的生化线索,增强了成纤维细胞的定向扩散和组织。由此产生的扩散和定向的细胞形态促进了成纤维细胞向肌成纤维细胞的转化。通过将人角质形成细胞共培养在工程化的真皮层上,我们成功地构建了双层皮肤构建体,其中角质形成细胞形成紧密连接,伴随细胞角蛋白-14 的表达升高,而成纤维细胞呈现出高度扩散的形态,纤维连接蛋白的表达增加。打印的水凝胶通过建立减轻炎症和刺激血管生成、肌成纤维细胞转化和细胞外基质重塑的生物活性微环境,加速全层伤口闭合。这种各向异性水凝胶在皮肤组织工程中有很大的应用潜力。