Suppr超能文献

磁控生物打印各向异性水凝胶促进骨髓间充质干细胞成骨分化以修复骨缺损。

Magnetically bioprinted anisotropic hydrogels promote BMSC osteogenic differentiation for bone defect repair.

作者信息

Xu Rong, Zhang Hua, Luo Yang, Pan Shiyi, Zhang Chi, Wu Xiaochuan, Zhang Guofeng, Su Cuicui, Xia Dongdong

机构信息

Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.

Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.

出版信息

Mater Today Bio. 2025 May 20;32:101885. doi: 10.1016/j.mtbio.2025.101885. eCollection 2025 Jun.

Abstract

Bone tissue engineering utilizing magnetic anisotropic hydrogels (MAHs) loaded with bone marrow-derived stem cells (BMSCs) offers a promising strategy to enhance the regeneration of bone defects due to their mechanotransduction and osteoinductive properties. However, the application of MAHs as bioinks for creating personalized 3D scaffolds faces significant challenges. Bioprinting necessitates a rapid sol-gel transition to enable the ink to form stable structures, whereas anisotropic shaping requires the ink to remain in a sol state post-printing, allowing magnetic particles to assemble freely under magnetic induction. To overcome these challenges, we develop a biomimetic MAH that recapitulate the anisotropic structures of the bone using a continuous Liquid-in-Liquid bioprinting method combined with magnetic induction. The constructed MAHs feature uniformly aligned FeO microfibers embedded within the bioprinted hydrogel filaments. These FeO microfibers provide microscale geometric cues that promote the elongation and osteogenic bioactivity of BMSCs through biomechanical signaling pathways. The implantation of the MAHs loaded with BMSCs in a critical-sized cranial defect model effectively accelerates the healing of bone injuries by facilitating collagen matrix development and promoting neovascularization. This study introduces a novel approach in the development of MAHs and presents a promising candidate for applications in bone tissue engineering and repair.

摘要

利用负载骨髓间充质干细胞(BMSCs)的磁各向异性水凝胶(MAHs)进行骨组织工程,因其机械转导和骨诱导特性,为增强骨缺损的再生提供了一种有前景的策略。然而,将MAHs用作生物墨水来制造个性化3D支架面临重大挑战。生物打印需要快速的溶胶-凝胶转变,以使墨水能够形成稳定的结构,而异向性成型则要求墨水在打印后保持溶胶状态,以便磁性颗粒在磁感应下自由组装。为了克服这些挑战,我们开发了一种仿生MAH,它使用连续液-液生物打印方法结合磁感应来重现骨的各向异性结构。构建的MAHs具有均匀排列的FeO微纤维,嵌入生物打印的水凝胶细丝中。这些FeO微纤维提供微观几何线索,通过生物力学信号通路促进BMSCs的伸长和成骨生物活性。将负载BMSCs的MAHs植入临界尺寸颅骨缺损模型中,通过促进胶原基质发育和促进新血管形成,有效地加速了骨损伤的愈合。本研究介绍了一种开发MAHs的新方法,并为骨组织工程和修复应用提供了一种有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fa/12149643/c07f86adfc07/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验