Suppr超能文献

用于组织运输应用的聚(癸二酸甘油酯)/纳米羟基磷灰石生物可吸收弹性体纳米复合材料的结构与力学特性

Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications.

作者信息

Rosenbalm Tabitha N, Teruel Maria, Day Cynthia S, Donati George L, Morykwas Michael, Argenta Louis, Kuthirummal Narayanan, Levi-Polyachenko Nicole

机构信息

Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, 27157.

School of Biomedical Engineering and Sciences (SBES), Virginia Tech-Wake Forest University, Winston-Salem, North Carolina, 27157.

出版信息

J Biomed Mater Res B Appl Biomater. 2016 Oct;104(7):1366-73. doi: 10.1002/jbm.b.33467. Epub 2015 Jul 22.

Abstract

Poly(glycerol sebacate) (PGS)/nanohydroxyapatite (nHA) composites were assessed to develop new materials for closure via tissue transport for nonhealing defects (e.g., cleft palate and large skin wounds). The elastic shape memory polymer, PGS, was reinforced with nHA at 3 and 5% loading to increase the mechanical properties compared with the undoped PGS. Differential scanning calorimetry (DSC) was utilized to identify a glass transition temperature (Tg ) of -25°C. X-ray diffraction demonstrated a reduction in the amorphous nature of the material. The Fourier transform infrared photoacoustic spectral (FTIR-PAS) data showed decreased CO bonding and increased hydrogen bonding with increased nHA incorporation. Composites exhibited Young's moduli in the range of 0.25-0.5 MPa and tensile strength of 1.5-3 N. No significant difference in extension to break (∼50 mm) with addition of nHA was observed. The elastic modulus significantly increased for 5% PGS/nHA compared to 0 and 3% PGS/nHA and tensile strength significantly increased for 3% PGS/nHA compared to 0 and 5% PGS/nHA. Degradation of 5% nHA/PGS significantly increased during the second week compared to PGS 0 and 3% PGS/nHA. The accelerated degradation for 5% PGS/nHA coupled with decreased flexibility and tensile strength implies an interruption in crosslinking. By maintaining flexibility and extension while increasing tensile strength, the 3% PGS/nHA doped satisfied the force range desired for closure of soft tissue defects. Based on this work, PGS with 3% nHA shape memory polymers should serve as a good candidate for closure of nonhealing soft tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1366-1373, 2016.

摘要

对聚癸二酸甘油酯(PGS)/纳米羟基磷灰石(nHA)复合材料进行了评估,以开发用于通过组织运输来闭合非愈合性缺损(如腭裂和大面积皮肤伤口)的新材料。通过3%和5%的负载量用nHA增强弹性形状记忆聚合物PGS,与未掺杂的PGS相比,以提高其机械性能。利用差示扫描量热法(DSC)确定玻璃化转变温度(Tg)为-25°C。X射线衍射表明材料的非晶性质有所降低。傅里叶变换红外光声光谱(FTIR-PAS)数据显示,随着nHA掺入量增加,CO键减少,氢键增加。复合材料的杨氏模量在0.25 - 0.5 MPa范围内,拉伸强度为1.5 - 3 N。添加nHA后,在断裂伸长率(约50 mm)方面未观察到显著差异。与0%和3%的PGS/nHA相比,5%的PGS/nHA的弹性模量显著增加;与0%和5%的PGS/nHA相比,3%的PGS/nHA的拉伸强度显著增加。与PGS 0%和3%的PGS/nHA相比,5%的nHA/PGS在第二周的降解显著增加。5%的PGS/nHA加速降解,同时柔韧性和拉伸强度降低,这意味着交联受到干扰。3%的PGS/nHA掺杂在保持柔韧性和伸长率的同时提高了拉伸强度,满足了闭合软组织缺损所需的力范围。基于这项工作,含3% nHA的PGS形状记忆聚合物应是闭合非愈合性软组织的良好候选材料。© 2015威利期刊公司。《生物医学材料研究杂志》B部分:应用生物材料,104B: 1366 - 1373, 2016。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验