Ghosh Dastidar Madhura, Basu Nilanjan, Kao I-Hsuan, Katoch Jyoti, Nayak Pramoda K, Singh Simranjeet, Bhallamudi Vidya Praveen
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
Quantum Center of Excellence for Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai 600036, India.
Nanoscale. 2024 Oct 24;16(41):19413-19421. doi: 10.1039/d4nr02078b.
Monolayer 2D transition metal dichalcogenides (TMDs) show high sensitivity to the local dielectric environment, leading to modulation of their optoelectronic properties. Here, we report on the formation of localized trions in a MoS/few-layer graphene van der Waals heterostructure. We performed temperature-dependent photoluminescence and Raman studies down to 80 K, to understand the mechanism for localized charge excitation, which shows contrasting behaviour with MoS/SiO. We attribute trion formation to optically induced charge transfer from few-layer graphene to MoS. Our theoretical analysis and simulations comparing the dielectric screening between MoS/SiO and MoS/few-layer graphene strongly suggest the dominance of excess charge carrier concentration over dielectric screening as the cause of trion formation. The concentration of charge carriers could be tuned actively with excitation power. Our findings provide an efficient approach for trion formation in MoS and explain the mechanism behind charge transfer in the MoS/few-layer graphene heterostructure.
单层二维过渡金属二硫属化物(TMDs)对局部介电环境表现出高灵敏度,从而导致其光电特性的调制。在此,我们报道了在MoS/少层石墨烯范德华异质结构中形成局域化的三重态激子。我们进行了温度低至80K的依赖温度的光致发光和拉曼研究,以了解局域电荷激发的机制,其表现出与MoS/SiO截然不同的行为。我们将三重态激子的形成归因于从少层石墨烯到MoS的光致电荷转移。我们比较MoS/SiO和MoS/少层石墨烯之间介电屏蔽的理论分析和模拟强烈表明,过量电荷载流子浓度比介电屏蔽更占主导地位,这是三重态激子形成的原因。电荷载流子的浓度可以通过激发功率进行主动调节。我们的发现为MoS中三重态激子的形成提供了一种有效方法,并解释了MoS/少层石墨烯异质结构中电荷转移背后的机制。