NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
Adv Neurobiol. 2022;28:3-44. doi: 10.1007/978-3-031-07167-6_1.
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
脊髓运动神经元是一类非常多样化的神经元,负责促进广泛的运动行为和自主功能。对运动神经元分化的研究为神经元多样化的发育机制提供了基本的见解,并阐明了在整个中枢神经系统中起作用的神经命运特化原则。由于其相对简单的解剖结构和可及性,运动神经元提供了一个易于处理的模型系统,可以解决神经发育的多个方面,包括早期模式形成、神经元迁移、轴突导向和突触特异性。除了在中枢回路和肌肉之间提供直接通信的作用外,最近的研究还揭示了运动神经元亚型特异性程序也在确定运动回路的中枢连接和功能方面发挥着重要作用。种间比较分析为亚型特异性程序的进化变化如何有助于运动行为的适应性变化提供了新的见解。本章重点介绍了控制脊髓运动神经元特化的基因调控网络,以及对脊髓运动神经元的研究如何加深我们对神经元特化和脊髓回路组装基本机制的理解。