Suppr超能文献

浑浊度分区:一种用于根据水下图像估算浑浊度的机器视觉应用。

Turbidivision: a machine vision application for estimating turbidity from underwater images.

机构信息

Department of Math and Computer Science, Susquehanna University, Sellinsgrove, Pennsylvania, United States.

Freshwater Research Institute, Susquehanna University, Sellinsgrove, Pennsylvania, United States.

出版信息

PeerJ. 2024 Sep 26;12:e18254. doi: 10.7717/peerj.18254. eCollection 2024.

Abstract

The measurement of turbidity serves as a key indicator of water quality and purity, crucial for informing decisions related to industrial, ecological, and public health applications. As existing processes require both additional expenses and steps to be taken during data collection relative to photography, we seek to generate accurate estimations of turbidity from underwater images. Such a process could give new insight to historical image datasets and provide an alternative to measuring turbidity when lower accuracy is acceptable, such as in citizen science and education applications. We used a two-step approach to a machine vision model, creating an image classification model trained on image data and their corresponding turbidity values recorded from a turbidimeter that is then used to generate continuous values through multiple linear regression. To create a robust model, we collected data for model training from a combination of field sites and lab mesocosms across suspended sediment and colorimetric profiles, with and without a Secchi disk for visual standard, and binned images into 11 classes 0-55 Formazin Nephelometric Units (FNU). Our resulting classification model is highly accurate with 100% of predictions within one class of the expected class, and 84% of predictions matching the expected class. Regression results provide a continuous value that is accurate to ±0.7 FNU of true values below 2.5 FNU and ±33% between 2.5 and 55 FNU; values that are less accurate than conventional turbidimeters but comparable to field-based test kits frequently used in classroom and citizen science applications. To make the model widely accessible, we have implemented it as a free and open-source user-friendly web, computer, and Google Play application that enables anyone with a modern device to make use of the tool, the model, or our repository of training images for data collection or future model development.

摘要

浊度的测量是水质和纯度的关键指标,对于工业、生态和公共卫生应用相关的决策至关重要。由于现有的方法在数据收集过程中既需要额外的费用,又需要采取额外的步骤,因此我们试图从水下图像中准确估计浊度。这样的过程可以为历史图像数据集提供新的见解,并在可接受较低精度的情况下(例如在公民科学和教育应用中)提供替代浊度测量的方法。我们使用了机器视觉模型的两步法,创建了一个基于图像数据的图像分类模型,并对其进行了训练,然后使用多元线性回归生成连续值。为了创建一个稳健的模型,我们从野外和实验室中采集了数据,这些数据涵盖了悬浮泥沙和比色计的剖面,有和没有视距盘作为视觉标准,以及将图像分为 11 个 0-55 福尔马肼浊度单位(FNU)的类。我们的分类模型非常准确,预测值与预期值相差一个类别的占 100%,与预期值匹配的占 84%。回归结果提供了一个连续的值,在低于 2.5 FNU 的真实值的精度为±0.7 FNU,在 2.5 到 55 FNU 之间的精度为±33%;与传统浊度计相比,精度稍差,但与课堂和公民科学应用中常用的现场测试试剂盒相当。为了使模型广泛可用,我们将其实现为一个免费的、开源的、用户友好的网络、计算机和谷歌播放应用程序,任何使用现代设备的人都可以使用该工具、模型或我们的训练图像库进行数据收集或未来的模型开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd46/11439400/9583de8a77e7/peerj-12-18254-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验