IEEE Trans Image Process. 2023;32:3066-3079. doi: 10.1109/TIP.2023.3276332. Epub 2023 May 30.
The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we built a large scale underwater image (LSUI) dataset, which covers more abundant underwater scenes and better visual quality reference images than existing underwater datasets. The dataset contains 4279 real-world underwater image groups, in which each raw image's clear reference images, semantic segmentation map and medium transmission map are paired correspondingly. We also reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network's attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available at https://bianlab.github.io/.
水下杂质的光吸收和散射导致水下成像质量较差。现有的基于数据驱动的水下图像增强 (UIE) 技术缺乏包含各种水下场景和高保真参考图像的大规模数据集。此外,对于增强效果,不同颜色通道和空间区域的不一致衰减没有得到充分考虑。在这项工作中,我们构建了一个大规模水下图像 (LSUI) 数据集,它比现有的水下数据集包含更丰富的水下场景和更好的视觉质量参考图像。该数据集包含 4279 组真实的水下图像,其中每个原始图像都有清晰的参考图像、语义分割图和中等传输图对应配对。我们还报告了一个 U 形 Transformer 网络,其中首次将 Transformer 模型引入 UIE 任务。U 形 Transformer 集成了一个通道多尺度特征融合 Transformer (CMSFFT) 模块和一个空间全局特征建模 Transformer (SGFMT) 模块,专门为 UIE 任务设计,增强了网络对颜色通道和空间区域的注意力,这些区域的衰减更为严重。同时,为了进一步提高对比度和饱和度,根据人类视觉原理,设计了一种结合 RGB、LAB 和 LCH 颜色空间的新颖损失函数。在现有数据集上的广泛实验验证了所提出技术的最先进性能,具有超过 2dB 的优势。数据集和演示代码可在 https://bianlab.github.io/ 上获取。