Suppr超能文献

脊髓室管膜瘤的疾病特征及临床特异性生存预测:一项基于遗传学和人群的研究

Disease characteristics and clinical specific survival prediction of spinal ependymoma: a genetic and population-based study.

作者信息

Fu Tengyue, Mao Chuxiao, Chen Zhuming, Huang Yuxiang, Li Houlin, Wang Chunhua, Liu Jie, Li Shenyu, Lin Famu

机构信息

Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China.

The Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.

出版信息

Front Neurol. 2024 Sep 13;15:1454061. doi: 10.3389/fneur.2024.1454061. eCollection 2024.

Abstract

BACKGROUND

Spinal Ependymoma (SP-EP) is the most commonly occurring tumor affecting the spinal cord. Prompt diagnosis and treatment can significantly enhance prognostic outcomes for patients. In this study, we conducted a comprehensive analysis of RNA sequencing data, along with associated clinical information, from patients diagnosed with SP-EP. The aim was to identify key genes that are characteristic of the disease and develop a survival-related nomogram.

METHODS

We first accessed the Gene Expression Integrated Database (GEO) to acquire the microarray dataset pertaining to SP-EP. This dataset was then processed to identify differentially expressed genes (DEGs) between SP-EP samples and normal controls. Furthermore, machine learning techniques and the CIBERSORT algorithm were employed to extract immune characteristic genes specific to SP-EP patients, thereby enhancing the characterization of target genes. Next, we retrieved comprehensive information on patients diagnosed with SP-EP between 2000 and 2020 from the Surveillance, Epidemiology, and End Results Database (SEER). Using this data, we screened for predictive factors that have a significant impact on patient outcomes. A nomogram was constructed to visualize the predicted overall survival (OS) rates of these patients at 3, 5, and 8 years post-diagnosis. Finally, to assess the reliability and clinical utility of our predictive model, we evaluated it using various metrics including the consistency index (C-index), time-dependent receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curves, and decision curve analysis (DCA).

RESULTS

A total of 5,151 DEGs were identified between the SP-EP sample and the normal sample. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that these DEGs were primarily involved in cellular processes, including cell cycle regulation and cell sensitivity mechanisms. Furthermore, immune infiltration analysis was utilized to identify the core gene . Regarding the survival rates of patients with SP-EP, the 3-year, 5-year, and 8-year survival rates were 72.5, 57.0, and 40.8%, respectively. Diagnostic age ( < 0.001), gender ( < 0.001), and surgical approach ( < 0.005) were identified as independent prognostic factors for OS. Additionally, a nomogram model was constructed based on these prognostic factors, demonstrating good consistency between predicted and actual results in the study's validation process. Notably, the study also demonstrated that more extensive surgical resection could extend patients' OS.

CONCLUSION

Through bioinformatics analysis of microarray datasets, we identified as a central gene associated with immune infiltration among DEGs. Previous studies have demonstrated that may play a pivotal role in the pathogenesis of SP-EP. Furthermore, this study developed and validated a prognostic prediction model in the form of a nomogram utilizing the SEER database, enabling clinicians to accurately assess treatment risks and benefits, thereby enhancing personalized therapeutic strategies and prognosis predictions.

摘要

背景

脊髓室管膜瘤(SP-EP)是最常见的影响脊髓的肿瘤。及时诊断和治疗可显著提高患者的预后结果。在本研究中,我们对诊断为SP-EP的患者的RNA测序数据以及相关临床信息进行了全面分析。目的是识别该疾病的关键基因,并开发一个与生存相关的列线图。

方法

我们首先访问基因表达综合数据库(GEO)以获取与SP-EP相关的微阵列数据集。然后对该数据集进行处理,以识别SP-EP样本与正常对照之间的差异表达基因(DEG)。此外,采用机器学习技术和CIBERSORT算法来提取SP-EP患者特有的免疫特征基因,从而增强靶基因的特征描述。接下来,我们从监测、流行病学和最终结果数据库(SEER)中检索了2000年至2020年期间诊断为SP-EP的患者的综合信息。利用这些数据,我们筛选了对患者预后有显著影响的预测因素。构建了一个列线图以可视化这些患者在诊断后3年、5年和8年的预测总生存率(OS)。最后,为了评估我们预测模型的可靠性和临床实用性,我们使用包括一致性指数(C-index)、时间依赖性受试者工作特征(ROC)曲线、曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)等各种指标对其进行评估。

结果

在SP-EP样本和正常样本之间共鉴定出5151个DEG。基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路分析表明,这些DEG主要参与细胞过程,包括细胞周期调控和细胞敏感性机制。此外,利用免疫浸润分析来识别核心基因。关于SP-EP患者的生存率,3年、5年和8年生存率分别为72.5%、57.0%和40.8%。诊断年龄(<0.001)、性别(<0.001)和手术方式(<0.005)被确定为OS的独立预后因素。此外,基于这些预后因素构建了一个列线图模型,在研究的验证过程中显示预测结果与实际结果具有良好的一致性。值得注意的是,该研究还表明更广泛的手术切除可以延长患者的OS。

结论

通过对微阵列数据集的生物信息学分析,我们在DEG中识别出 作为与免疫浸润相关的核心基因。先前的研究表明, 可能在SP-EP的发病机制中起关键作用。此外,本研究利用SEER数据库开发并验证了一个列线图形式的预后预测模型,使临床医生能够准确评估治疗风险和益处,从而加强个性化治疗策略和预后预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ace/11428185/195243f7cfa0/fneur-15-1454061-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验