文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于二维材料的表面增强拉曼光谱平台(单独或纳米复合形式)——从化学增强角度探讨

2D Material-Based Surface-Enhanced Raman Spectroscopy Platforms (Either Alone or in Nanocomposite Form)-From a Chemical Enhancement Perspective.

作者信息

Majumdar Dipanwita

机构信息

Satyendra Nath Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.

出版信息

ACS Omega. 2024 Sep 11;9(38):40242-40258. doi: 10.1021/acsomega.4c06398. eCollection 2024 Sep 24.


DOI:10.1021/acsomega.4c06398
PMID:39346812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11425813/
Abstract

Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique with molecular fingerprinting capability and high sensitivity, even down to the single-molecule level. As it is 50 years since the observation of the phenomenon, it has now become an important task to discuss the challenges in this field and determine the areas of development. Electromagnetic enhancement has a mature theoretical explanation, while a chemical mechanism which involves more complex interactions has been difficult to elucidate until recently. This article focuses on the 2D material-based platforms where chemical enhancement (CE) is a significant contributor to SERS. In the context of a diverse range (transition metal dichalcogenides, MXenes, etc.) and categories (insulating, semiconducting, semimetallic, and metallic) of 2D materials, the review aims to realize the influence of various factors on SERS response such as substrates (layer thickness, structural phase, etc.), analytes (energy levels, molecular orientation, etc.), excitation wavelengths, molecular resonances, charge-transfer transitions, dipole interactions, etc. Some examples of special treatments or approaches have been outlined for overcoming well-known limitations of SERS and include how CE benefits from the defect-induced physicochemical changes to 2D materials mostly via the charge-transport ability or surface interaction efficiency. The review may help readers understand different phenomena involved in CE and broaden the substrate-designing approaches based on a diverse set of 2D materials.

摘要

表面增强拉曼光谱(SERS)是一种具有分子指纹识别能力和高灵敏度的振动光谱技术,甚至能达到单分子水平。自该现象被发现已有50年,如今讨论该领域的挑战并确定其发展领域已成为一项重要任务。电磁增强有成熟的理论解释,而涉及更复杂相互作用的化学机制直到最近才得以阐明。本文聚焦于基于二维材料的平台,其中化学增强(CE)是SERS的一个重要贡献因素。在二维材料种类繁多(过渡金属二硫属化物、MXenes等)和类别多样(绝缘、半导体、半金属和金属)的背景下,本综述旨在了解各种因素对SERS响应的影响,如基底(层厚、结构相等)、分析物(能级、分子取向等)、激发波长、分子共振、电荷转移跃迁、偶极相互作用等。文中概述了一些特殊处理或方法的实例,以克服SERS的一些众所周知的局限性,包括CE如何主要通过电荷传输能力或表面相互作用效率从二维材料的缺陷诱导物理化学变化中受益。本综述可能有助于读者理解CE中涉及的不同现象,并拓宽基于多种二维材料的基底设计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/fc6dcbe42d5b/ao4c06398_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/6367ac035807/ao4c06398_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/cf9c09064f73/ao4c06398_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/2a7d0778ce13/ao4c06398_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/c6eff0853834/ao4c06398_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/17e5ac4236ac/ao4c06398_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/83ef0ea39971/ao4c06398_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/4faf5fd666af/ao4c06398_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/fe000939de37/ao4c06398_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/fc6dcbe42d5b/ao4c06398_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/6367ac035807/ao4c06398_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/cf9c09064f73/ao4c06398_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/2a7d0778ce13/ao4c06398_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/c6eff0853834/ao4c06398_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/17e5ac4236ac/ao4c06398_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/83ef0ea39971/ao4c06398_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/4faf5fd666af/ao4c06398_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/fe000939de37/ao4c06398_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f0/11425813/fc6dcbe42d5b/ao4c06398_0009.jpg

相似文献

[1]
2D Material-Based Surface-Enhanced Raman Spectroscopy Platforms (Either Alone or in Nanocomposite Form)-From a Chemical Enhancement Perspective.

ACS Omega. 2024-9-11

[2]
Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials.

ACS Nano. 2019-7-23

[3]
Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions.

Innovation (Camb). 2020-10-13

[4]
Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering.

Anal Chem. 2024-6-18

[5]
Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance.

Adv Mater. 2024-5

[6]
2D GaN for Highly Reproducible Surface Enhanced Raman Scattering.

Small. 2021-11

[7]
Surface-Enhanced Raman Scattering Using 2D Materials.

Chemistry. 2024-6-3

[8]
Recognition of dipole-induced electric field in 2D materials for surface-enhanced Raman scattering.

Front Chem. 2023-4-7

[9]
Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing.

Adv Mater. 2019-8

[10]
Ultrasensitive Plasmon-Free Surface-Enhanced Raman Spectroscopy with Femtomolar Detection Limit from 2D van der Waals Heterostructure.

Nano Lett. 2020-3-11

引用本文的文献

[1]
Molecular spectroscopies with semiconductor metasurfaces: towards dual optical/chemical SERS.

J Mater Chem C Mater. 2025-5-22

本文引用的文献

[1]
Enhancing charge transfer in a WO/g-CN heterostructure band structure engineering for effective SERS detection and flexible substrate applications.

Analyst. 2023-12-18

[2]
Efficient interfacial self-assembled MXene/Ag NPs film nanocarriers for SERS-traceable drug delivery.

Anal Bioanal Chem. 2023-9

[3]
ReS Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing.

Molecules. 2023-5-24

[4]
Ultrafast charge transfer in mixed-dimensional WO nanowire/WSe heterostructures for attomolar-level molecular sensing.

Nat Commun. 2023-5-11

[5]
Plasmonic Coupling of Au Nanoclusters on a Flexible MXene/Graphene Oxide Fiber for Ultrasensitive SERS Sensing.

ACS Sens. 2023-3-24

[6]
Ni and O co-modified MoS as universal SERS substrate for the detection of different kinds of substances.

J Colloid Interface Sci. 2023-4

[7]
Aluminum Plasmonic Nanoclusters for Paper-Based Surface-Enhanced Raman Spectroscopy.

Anal Chem. 2022-11-29

[8]
A WS-gold nanoparticle heterostructure-based novel SERS platform for the rapid identification of antibiotic-resistant pathogens.

Nanoscale Adv. 2020-3-31

[9]
Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells.

ACS Appl Mater Interfaces. 2022-9-14

[10]
Gold nanoparticles decorated 2D-WSe as a SERS substrate.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-10-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索