Majumdar Dipanwita
Satyendra Nath Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
ACS Omega. 2024 Sep 11;9(38):40242-40258. doi: 10.1021/acsomega.4c06398. eCollection 2024 Sep 24.
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique with molecular fingerprinting capability and high sensitivity, even down to the single-molecule level. As it is 50 years since the observation of the phenomenon, it has now become an important task to discuss the challenges in this field and determine the areas of development. Electromagnetic enhancement has a mature theoretical explanation, while a chemical mechanism which involves more complex interactions has been difficult to elucidate until recently. This article focuses on the 2D material-based platforms where chemical enhancement (CE) is a significant contributor to SERS. In the context of a diverse range (transition metal dichalcogenides, MXenes, etc.) and categories (insulating, semiconducting, semimetallic, and metallic) of 2D materials, the review aims to realize the influence of various factors on SERS response such as substrates (layer thickness, structural phase, etc.), analytes (energy levels, molecular orientation, etc.), excitation wavelengths, molecular resonances, charge-transfer transitions, dipole interactions, etc. Some examples of special treatments or approaches have been outlined for overcoming well-known limitations of SERS and include how CE benefits from the defect-induced physicochemical changes to 2D materials mostly via the charge-transport ability or surface interaction efficiency. The review may help readers understand different phenomena involved in CE and broaden the substrate-designing approaches based on a diverse set of 2D materials.
表面增强拉曼光谱(SERS)是一种具有分子指纹识别能力和高灵敏度的振动光谱技术,甚至能达到单分子水平。自该现象被发现已有50年,如今讨论该领域的挑战并确定其发展领域已成为一项重要任务。电磁增强有成熟的理论解释,而涉及更复杂相互作用的化学机制直到最近才得以阐明。本文聚焦于基于二维材料的平台,其中化学增强(CE)是SERS的一个重要贡献因素。在二维材料种类繁多(过渡金属二硫属化物、MXenes等)和类别多样(绝缘、半导体、半金属和金属)的背景下,本综述旨在了解各种因素对SERS响应的影响,如基底(层厚、结构相等)、分析物(能级、分子取向等)、激发波长、分子共振、电荷转移跃迁、偶极相互作用等。文中概述了一些特殊处理或方法的实例,以克服SERS的一些众所周知的局限性,包括CE如何主要通过电荷传输能力或表面相互作用效率从二维材料的缺陷诱导物理化学变化中受益。本综述可能有助于读者理解CE中涉及的不同现象,并拓宽基于多种二维材料的基底设计方法。
Innovation (Camb). 2020-10-13
Chemistry. 2024-6-3
Adv Mater. 2019-8
J Mater Chem C Mater. 2025-5-22
J Colloid Interface Sci. 2023-4
Anal Chem. 2022-11-29
ACS Appl Mater Interfaces. 2022-9-14
Spectrochim Acta A Mol Biomol Spectrosc. 2022-10-5