Suppr超能文献

基于机器学习的哮喘性别差异的基因生物标志物预测

Genetic biomarker prediction based on gender disparity in asthma throughout machine learning.

作者信息

Chen Cai, Yuan Fenglong, Meng Xiangwei, Peng Fulai, Shao Xuekun, Wang Cheng, Shen Yang, Du Haitao, Lv Danyang, Zhang Ningling, Wang Xiuli, Wang Tao, Wang Ping

机构信息

Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China.

Department of Pulmonary and Critical Care Medicine, Yantai Yeda Hospital, Yantai, China.

出版信息

Front Med (Lausanne). 2024 Sep 13;11:1397746. doi: 10.3389/fmed.2024.1397746. eCollection 2024.

Abstract

BACKGROUND

Asthma is a chronic respiratory condition affecting populations worldwide, with prevalence ranging from 1-18% across different nations. Gender differences in asthma prevalence have attracted much attention.

PURPOSE

The aim of this study was to investigate biomarkers of gender differences in asthma prevalence based on machine learning.

METHOD

The data came from the gene expression omnibus database (GSE69683, GSE76262, and GSE41863), which involved in a number of 575 individuals, including 240 males and 335 females. Theses samples were divided into male group and female group, respectively. Grid search and cross-validation were employed to adjust model parameters for support vector machine, random forest, decision tree and logistic regression model. Accuracy, precision, recall, and F score were used to evaluate the performance of the models during the training process. After model optimization, four machine learning models were utilized to predict biomarkers of sex differences in asthma. In order to validate the accuracy of our results, we performed Wilcoxon tests on the genes expression.

RESULT

In datasets GSE76262 and GSE69683, support vector machine, random forest, logistic regression, and decision tree all achieve 100% accuracy, precision, recall, and F score. Our findings reveal that XIST serves as a common biomarker among the three samples, comprising a total of 575 individuals, with higher expression levels in females compared to males ( < 0.01).

CONCLUSION

XIST serves as a genetic biomarker for gender differences in the prevalence of asthma.

摘要

背景

哮喘是一种影响全球人群的慢性呼吸道疾病,不同国家的患病率在1%至18%之间。哮喘患病率的性别差异备受关注。

目的

本研究旨在基于机器学习探究哮喘患病率性别差异的生物标志物。

方法

数据来自基因表达综合数据库(GSE69683、GSE76262和GSE41863),涉及575名个体,其中男性240名,女性335名。这些样本分别分为男性组和女性组。采用网格搜索和交叉验证来调整支持向量机、随机森林、决策树和逻辑回归模型的参数。在训练过程中,使用准确率、精确率、召回率和F分数来评估模型的性能。模型优化后,利用四种机器学习模型预测哮喘性别差异的生物标志物。为了验证结果的准确性,我们对基因表达进行了 Wilcoxon 检验。

结果

在数据集GSE76262和GSE69683中,支持向量机、随机森林、逻辑回归和决策树的准确率、精确率、召回率和F分数均达到100%。我们的研究结果表明,XIST是这三个样本(共575名个体)中的一个共同生物标志物,女性的表达水平高于男性(<0.01)。

结论

XIST是哮喘患病率性别差异的遗传生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10d3/11427272/1917ad8fb6b3/fmed-11-1397746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验