Suppr超能文献

基于机器学习算法的儿童哮喘相关生物标志物的鉴定:综述。

Identification of biomarkers associated with pediatric asthma using machine learning algorithms: A review.

机构信息

Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.

The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.

出版信息

Medicine (Baltimore). 2023 Nov 24;102(47):e36070. doi: 10.1097/MD.0000000000036070.

Abstract

Pediatric asthma is a complex disease with a multifactorial etiology. The identification of biomarkers associated with pediatric asthma can provide insights into the pathogenesis of the disease and aid in the development of novel diagnostic and therapeutic strategies. This study aimed to identify potential biomarkers for pediatric asthma using Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning algorithms. We obtained gene expression data from publicly available databases and performed WGCNA to identify gene co-expression modules associated with pediatric asthma. We then used machine learning algorithms, including random forest, lasso regression algorithm, and support vector machine-recursive feature elimination, to classify asthma cases and controls based on the identified gene modules. We also performed functional enrichment analyses to investigate the biological functions of the identified genes.We detected 24,544 genes exhibiting differential expression between controlled and uncontrolled genes from the GSE135192 dataset. In the combined WCGNA analysis, a total of 104 co-expression genes were screened, both controlled and uncontrolled. After screening, 11 hub genes were identified. They were AK2, PDK4, PER3, GZMH, NUMBL, NRL, SCO2, CREBZF, LARP1B, RXFP1, and VDAC3P1. The areas under their receiver operating characteristic curve were above 0.78. Our study identified potential biomarkers for pediatric asthma using WGCNA and machine learning algorithms. Our findings suggest that 11 hub genes could be used as novel diagnostic markers and treatment targets for pediatric asthma. These findings provide new insights into the pathogenesis of pediatric asthma and may aid in the development of novel diagnostic and therapeutic strategies.

摘要

儿童哮喘是一种复杂的疾病,具有多因素病因。鉴定与儿童哮喘相关的生物标志物可以深入了解疾病的发病机制,并有助于开发新的诊断和治疗策略。本研究旨在使用加权基因共表达网络分析(WGCNA)和机器学习算法鉴定儿童哮喘的潜在生物标志物。我们从公开可用的数据库中获取基因表达数据,并进行 WGCNA 以鉴定与儿童哮喘相关的基因共表达模块。然后,我们使用机器学习算法,包括随机森林、套索回归算法和支持向量机递归特征消除,根据鉴定的基因模块对哮喘病例和对照进行分类。我们还进行了功能富集分析,以研究鉴定基因的生物学功能。我们从 GSE135192 数据集检测到 24544 个在受控和未受控基因之间表现出差异表达的基因。在联合 WCGNA 分析中,总共筛选出 104 个受控和未受控的共表达基因。筛选后,鉴定出 11 个枢纽基因。它们是 AK2、PDK4、PER3、GZMH、NUMBL、NRL、SCO2、CREBZF、LARP1B、RXFP1 和 VDAC3P1。它们的接收器操作特征曲线下面积均高于 0.78。我们使用 WGCNA 和机器学习算法鉴定了儿童哮喘的潜在生物标志物。我们的研究结果表明,11 个枢纽基因可作为儿童哮喘的新型诊断标志物和治疗靶点。这些发现为儿童哮喘的发病机制提供了新的见解,并可能有助于开发新的诊断和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf28/10681392/7bb62c832aad/medi-102-e36070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验