Suppr超能文献

SPIDER:构建细胞类型特异性蛋白质-蛋白质相互作用网络。

SPIDER: constructing cell-type-specific protein-protein interaction networks.

作者信息

Kupershmidt Yael, Kasif Simon, Sharan Roded

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.

出版信息

Bioinform Adv. 2024 Aug 30;4(1):vbae130. doi: 10.1093/bioadv/vbae130. eCollection 2024.

Abstract

MOTIVATION

Protein-protein interactions (PPIs) play essential roles in the buildup of cellular machinery and provide the skeleton for cellular signaling. However, these biochemical roles are context dependent and interactions may change across cell type, time, and space. In contrast, PPI detection assays are run in a single condition that may not even be an endogenous condition of the organism, resulting in static networks that do not reflect full cellular complexity. Thus, there is a need for computational methods to predict cell-type-specific interactions.

RESULTS

Here we present SPIDER (Supervised Protein Interaction DEtectoR), a graph attention-based model for predicting cell-type-specific PPI networks. In contrast to previous attempts at this problem, which were unsupervised in nature, our model's training is guided by experimentally measured cell-type-specific networks, enhancing its performance. We evaluate our method using experimental data of cell-type-specific networks from both humans and mice, and show that it outperforms current approaches by a large margin. We further demonstrate the ability of our method to generalize the predictions to datasets of tissues lacking prior PPI experimental data. We leverage the networks predicted by the model to facilitate the identification of tissue-specific disease genes.

AVAILABILITY AND IMPLEMENTATION

Our code and data are available at https://github.com/Kuper994/SPIDER.

摘要

动机

蛋白质-蛋白质相互作用(PPI)在细胞机制的构建中起着至关重要的作用,并为细胞信号传导提供框架。然而,这些生化作用取决于具体环境,相互作用可能会随细胞类型、时间和空间而变化。相比之下,PPI检测试验是在单一条件下进行的,甚至可能不是生物体的内源性条件,从而产生无法反映细胞全部复杂性的静态网络。因此,需要计算方法来预测细胞类型特异性相互作用。

结果

在此,我们提出了SPIDER(监督式蛋白质相互作用检测器),这是一种基于图注意力的模型,用于预测细胞类型特异性PPI网络。与之前针对该问题的无监督尝试不同,我们的模型训练以实验测量的细胞类型特异性网络为指导,从而提高了其性能。我们使用来自人类和小鼠的细胞类型特异性网络的实验数据评估了我们的方法,并表明它在很大程度上优于当前方法。我们进一步证明了我们的方法能够将预测推广到缺乏先前PPI实验数据的组织数据集。我们利用模型预测的网络来促进组织特异性疾病基因的识别。

可用性和实现方式

我们的代码和数据可在https://github.com/Kuper994/SPIDER获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a6/11438548/9168ff23cf9d/vbae130f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验