Suppr超能文献

Pair-EGRET:通过图注意网络和蛋白质语言模型增强蛋白质相互作用位点的预测。

Pair-EGRET: enhancing the prediction of protein-protein interaction sites through graph attention networks and protein language models.

机构信息

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States.

出版信息

Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae588.

Abstract

MOTIVATION

Proteins are responsible for most biological functions, many of which require the interaction of more than one protein molecule. However, accurately predicting protein-protein interaction (PPI) sites (the interfacial residues of a protein that interact with other protein molecules) remains a challenge. The growing demand and cost associated with the reliable identification of PPI sites using conventional experimental methods call for computational tools for automated prediction and understanding of PPIs.

RESULTS

We present Pair-EGRET, an edge-aggregated graph attention network that leverages the features extracted from pretrained transformer-like models to accurately predict PPI sites. Pair-EGRET works on a k-nearest neighbor graph, representing the 3D structure of a protein, and utilizes the cross-attention mechanism for accurate identification of interfacial residues of a pair of proteins. Through an extensive evaluation study using a diverse array of experimental data, evaluation metrics, and case studies on representative protein sequences, we demonstrate that Pair-EGRET can achieve remarkable performance in predicting PPI sites. Moreover, Pair-EGRET can provide interpretable insights from the learned cross-attention matrix.

AVAILABILITY AND IMPLEMENTATION

Pair-EGRET is freely available in open source form at the GitHub Repository https://github.com/1705004/Pair-EGRET.

摘要

动机

蛋白质负责大多数生物功能,其中许多功能需要不止一个蛋白质分子的相互作用。然而,准确预测蛋白质-蛋白质相互作用(PPI)位点(与其他蛋白质分子相互作用的蛋白质的界面残基)仍然是一个挑战。使用传统实验方法可靠地识别 PPI 位点的需求和成本不断增加,因此需要用于自动预测和理解 PPIs 的计算工具。

结果

我们提出了 Pair-EGRET,这是一种基于边缘聚合图注意网络的方法,利用从预训练的类似转换器的模型中提取的特征来准确预测 PPI 位点。Pair-EGRET 基于 k-最近邻图工作,代表蛋白质的 3D 结构,并利用交叉注意机制准确识别一对蛋白质的界面残基。通过使用各种实验数据、评估指标和代表性蛋白质序列的案例研究进行广泛的评估研究,我们证明了 Pair-EGRET 可以在预测 PPI 位点方面取得显著的性能。此外,Pair-EGRET 可以从学习到的交叉注意矩阵中提供可解释的见解。

可用性和实现

Pair-EGRET 可在 GitHub 存储库 https://github.com/1705004/Pair-EGRET 上以开源形式免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddbe/11495673/c4a9db6f98f3/btae588f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验