Suppr超能文献

使用半监督学习减少手动标记需求并改善三维自适应光学光学相干断层扫描(3D AO-OCT)体积中的视网膜神经节细胞识别

Reducing manual labeling requirements and improved retinal ganglion cell identification in 3D AO-OCT volumes using semi-supervised learning.

作者信息

Zhou Mengxi, Zhang Yue, Karimi Monsefi Amin, Choi Stacey S, Doble Nathan, Parthasarathy Srinivasan, Ramnath Rajiv

机构信息

The Ohio State University, Department of Computer Science and Engineering, 2015 Neil Ave., Columbus, OH 43210, USA.

The Ohio State University, College of Optometry, 338 W 10th Ave., Columbus, OH 43210, USA.

出版信息

Biomed Opt Express. 2024 Jul 9;15(8):4540-4556. doi: 10.1364/BOE.526053. eCollection 2024 Aug 1.

Abstract

Adaptive optics-optical coherence tomography (AO-OCT) allows for the three-dimensional visualization of retinal ganglion cells (RGCs) in the living human eye. Quantitative analyses of RGCs have significant potential for improving the diagnosis and monitoring of diseases such as glaucoma. Recent advances in machine learning (ML) have made possible the automatic identification and analysis of RGCs within the complex three-dimensional retinal volumes obtained with such imaging. However, the current state-of-the-art ML approach relies on fully supervised training, which demands large amounts of training labels. Each volume requires many hours of expert manual annotation. Here, two semi-supervised training schemes are introduced, (i) cross-consistency training and (ii) cross pseudo supervision that utilize unlabeled AO-OCT volumes together with a minimal set of labels, vastly reducing the labeling demands. Moreover, these methods outperformed their fully supervised counterpart and achieved accuracy comparable to that of human experts.

摘要

自适应光学光学相干断层扫描(AO-OCT)能够对活人眼中的视网膜神经节细胞(RGC)进行三维可视化。RGC的定量分析在改善青光眼等疾病的诊断和监测方面具有巨大潜力。机器学习(ML)的最新进展使得在此类成像获得的复杂三维视网膜体积内自动识别和分析RGC成为可能。然而,当前的先进ML方法依赖于完全监督训练,这需要大量的训练标签。每个体积都需要专家花费数小时进行手动标注。在此,引入了两种半监督训练方案,(i)交叉一致性训练和(ii)交叉伪监督,它们利用未标记的AO-OCT体积以及最少的一组标签,极大地减少了标注需求。此外,这些方法优于其完全监督的对应方法,并且实现了与人类专家相当的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/082b/11427208/7c8c4296bd16/boe-15-8-4540-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验