School of Optometry, Indiana University, Bloomington, IN 47405;
School of Optometry, Indiana University, Bloomington, IN 47405.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12803-12808. doi: 10.1073/pnas.1711734114. Epub 2017 Nov 14.
Ganglion cells (GCs) are fundamental to retinal neural circuitry, processing photoreceptor signals for transmission to the brain via their axons. However, much remains unknown about their role in vision and their vulnerability to disease leading to blindness. A major bottleneck has been our inability to observe GCs and their degeneration in the living human eye. Despite two decades of development of optical technologies to image cells in the living human retina, GCs remain elusive due to their high optical translucency. Failure of conventional imaging-using predominately singly scattered light-to reveal GCs has led to a focus on multiply-scattered, fluorescence, two-photon, and phase imaging techniques to enhance GC contrast. Here, we show that singly scattered light actually carries substantial information that reveals GC somas, axons, and other retinal neurons and permits their quantitative analysis. We perform morphometry on GC layer somas, including projection of GCs onto photoreceptors and identification of the primary GC subtypes, even beneath nerve fibers. We obtained singly scattered images by: () marrying adaptive optics to optical coherence tomography to avoid optical blurring of the eye; () performing 3D subcellular image registration to avoid motion blur; and () using organelle motility inside somas as an intrinsic contrast agent. Moreover, through-focus imaging offers the potential to spatially map individual GCs to underlying amacrine, bipolar, horizontal, photoreceptor, and retinal pigment epithelium cells, thus exposing the anatomical substrate for neural processing of visual information. This imaging modality is also a tool for improving clinical diagnosis and assessing treatment of retinal disease.
神经节细胞(GCs)是视网膜神经回路的基础,它们通过轴突将光感受器信号处理后传输到大脑。然而,我们对它们在视觉中的作用及其对导致失明的疾病的脆弱性仍然知之甚少。一个主要的瓶颈是我们无法在活体人眼中观察到 GCs 及其退化。尽管有二十年的光学技术发展用于对活体人视网膜中的细胞进行成像,但由于 GCs 的高光学透明度,它们仍然难以捉摸。由于传统的成像技术——主要是单散射光——无法揭示 GCs,因此人们将注意力集中在多散射、荧光、双光子和相位成像技术上,以增强 GC 对比度。在这里,我们表明,单散射光实际上携带了大量信息,可以揭示 GC 体、轴突和其他视网膜神经元,并允许对其进行定量分析。我们对 GC 层体进行形态测量,包括将 GCs 投影到光感受器上,以及识别主要的 GC 亚型,甚至在神经纤维下方。我们通过以下方法获得单散射图像:(1)将自适应光学与光相干断层扫描相结合,以避免眼睛的光学模糊;(2)进行 3D 亚细胞图像配准,以避免运动模糊;(3)使用体内部细胞器的运动作为内在对比剂。此外,通过焦点成像提供了将单个 GC 映射到下面的无长突细胞、双极细胞、水平细胞、光感受器和视网膜色素上皮细胞的空间定位的潜力,从而揭示了视觉信息神经处理的解剖学基础。这种成像方式也是改善临床诊断和评估视网膜疾病治疗的工具。