Rodríguez Cristina, Pan Daisong, Natan Ryan G, Mohr Manuel A, Miao Max, Chen Xiaoke, Northen Trent R, Vogel John P, Ji Na
Department of Physics, University of California, Berkeley, CA, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Biomed Opt Express. 2024 Jul 9;15(8):4513-4524. doi: 10.1364/BOE.527357. eCollection 2024 Aug 1.
Third-harmonic generation microscopy is a powerful label-free nonlinear imaging technique, providing essential information about structural characteristics of cells and tissues without requiring external labelling agents. In this work, we integrated a recently developed compact adaptive optics module into a third-harmonic generation microscope, to measure and correct for optical aberrations in complex tissues. Taking advantage of the high sensitivity of the third-harmonic generation process to material interfaces and thin membranes, along with the 1,300-nm excitation wavelength used here, our adaptive optical third-harmonic generation microscope enabled high-resolution in vivo imaging within highly scattering biological model systems. Examples include imaging of myelinated axons and vascular structures within the mouse spinal cord and deep cortical layers of the mouse brain, along with imaging of key anatomical features in the roots of the model plant . In all instances, aberration correction led to enhancements in image quality.
三次谐波产生显微镜是一种强大的无标记非线性成像技术,无需外部标记剂即可提供有关细胞和组织结构特征的重要信息。在这项工作中,我们将最近开发的紧凑型自适应光学模块集成到三次谐波产生显微镜中,以测量和校正复杂组织中的光学像差。利用三次谐波产生过程对材料界面和薄膜的高灵敏度,以及此处使用的1300纳米激发波长,我们的自适应光学三次谐波产生显微镜能够在高度散射的生物模型系统中进行高分辨率的体内成像。实例包括对小鼠脊髓内的有髓轴突和血管结构以及小鼠大脑深层皮质层的成像,以及对模式植物根部关键解剖特征的成像。在所有情况下,像差校正都提高了图像质量。