Suppr超能文献

使用三次谐波产生显微镜对生理保存的人脑组织中的髓鞘病理学进行动态成像。

Dynamic imaging of myelin pathology in physiologically preserved human brain tissue using third harmonic generation microscopy.

作者信息

Meijns Niels R C, Blokker Max, Idema Sander, 't Hart Bert A, Veta Mitko, Ettema Loes, van Iersel Juliet, Zhang Zhiqing, Schenk Geert J, Groot Marie Louise, Luchicchi Antonio

机构信息

Department of Anatomy and Neuroscience, Amsterdam UMC - location VUmc, Amsterdam Neuroscience, MS Center Amsterdam, The Netherlands.

LaserLaB, Faculty of Science, Department of Physics, Vrije Universiteit Amsterdam, The Netherlands.

出版信息

PLoS One. 2025 Mar 31;20(3):e0310663. doi: 10.1371/journal.pone.0310663. eCollection 2025.

Abstract

Myelin pathology is known to play a central role in disorders such as multiple sclerosis (MS) among others. Despite this, the pathological mechanisms underlying these conditions are often difficult to unravel. Conventional techniques like immunohistochemistry or dye-based approaches, do not provide a temporal characterization of the pathophysiological aberrations responsible for myelin changes in human specimens. Here, to circumvent this curb, we present a label-free, live-cell imaging approach of myelin using recent advancements in nonlinear harmonic generation microscopy applied to physiologically viable human brain tissue from post-mortem donors. Gray and white matter brain tissue from epilepsy surgery and post-mortem donors was excised. To sustain viability of the specimens for several hours, they were subjected to either acute or organotypic slice culture protocols in artificial cerebral spinal fluid. Imaging was performed using a femtosecond pulsed 1050 nm laser to generate second harmonic generation (SHG) and third harmonic generation (THG) signals directly from myelin and axon-like structures without the need to add any labels. Experiments on acute human brain slices and post-mortem human slice cultures reveal that myelin, along with lipid bodies, are the prime sources of THG signal. We show that tissue viability is maintained over extended periods during THG microscopy, and that prolonged THG imaging is able to detect experimentally induced subtle alterations in myelin morphology. Finally, we provide practical evidence that live-cell imaging of myelin with THG microscopy is a sensitive tool to investigate subtle changes in white matter of neurological donors. Overall, our findings support that nonlinear live-cell imaging is a suitable setup for researching myelin morphology in neurological conditions like MS.

摘要

已知髓鞘病理在诸如多发性硬化症(MS)等疾病中起着核心作用。尽管如此,这些病症背后的病理机制往往难以阐明。像免疫组织化学或基于染料的传统技术,无法对导致人类标本中髓鞘变化的病理生理异常进行时间特征描述。在此,为规避这一限制,我们利用应用于来自死后捐赠者的生理活性人脑组织的非线性谐波产生显微镜的最新进展,提出了一种无标记的髓鞘活细胞成像方法。切除了来自癫痫手术和死后捐赠者的脑灰质和白质组织。为使标本存活数小时,将它们置于人工脑脊液中的急性或器官型切片培养方案中。使用飞秒脉冲1050纳米激光进行成像,直接从髓鞘和轴突样结构产生二次谐波产生(SHG)和三次谐波产生(THG)信号,无需添加任何标记。对急性人脑切片和死后人类切片培养物的实验表明,髓鞘与脂质体一起是THG信号的主要来源。我们表明,在THG显微镜检查期间,组织活力可在较长时间内维持,并且长时间的THG成像能够检测到实验诱导的髓鞘形态的细微变化。最后,我们提供了实际证据,即使用THG显微镜对髓鞘进行活细胞成像是研究神经捐赠者白质细微变化的灵敏工具。总体而言,我们的研究结果支持非线性活细胞成像是研究MS等神经疾病中髓鞘形态的合适设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/347e/11957345/e05618b8908e/pone.0310663.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验