Suppr超能文献

前列腺癌进展模型提供了对与进行性疾病状态相关的动态分子变化的深入了解。

Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States.

机构信息

Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York.

Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.

出版信息

Cancer Res Commun. 2024 Oct 1;4(10):2783-2798. doi: 10.1158/2767-9764.CRC-24-0210.

Abstract

UNLABELLED

Prostate cancer is a significant health concern and the most commonly diagnosed cancer in men worldwide. Understanding the complex process of prostate tumor evolution and progression is crucial for improved diagnosis, treatments, and patient outcomes. Previous studies have focused on unraveling the dynamics of prostate cancer evolution using phylogenetic or lineage analysis approaches. However, those approaches have limitations in capturing the complete disease process or incorporating genomic and transcriptomic variations comprehensively. In this study, we applied a novel computational approach to derive a prostate cancer progression model using multidimensional data from 497 prostate tumor samples and 52 tumor-adjacent normal samples obtained from The Cancer Genome Atlas study. The model was validated using data from an independent cohort of 545 primary tumor samples. By integrating transcriptomic and genomic data, our model provides a comprehensive view of prostate tumor progression, identifies crucial signaling pathways and genetic events, and uncovers distinct transcription signatures associated with disease progression. Our findings have significant implications for cancer research and hold promise for guiding personalized treatment strategies in prostate cancer.

SIGNIFICANCE

We developed and validated a progression model of prostate cancer using >1,000 tumor and normal tissue samples. The model provided a comprehensive view of prostate tumor evolution and progression.

摘要

未加标签

前列腺癌是一个严重的健康问题,也是全球男性最常见的癌症。了解前列腺肿瘤演进和进展的复杂过程对于改善诊断、治疗和患者预后至关重要。先前的研究集中于使用系统发育或谱系分析方法来揭示前列腺癌演进的动态。然而,这些方法在捕捉完整的疾病过程或全面纳入基因组和转录组变化方面存在局限性。在这项研究中,我们应用了一种新的计算方法,使用来自癌症基因组图谱研究的 497 个前列腺肿瘤样本和 52 个肿瘤邻近正常样本的多维数据推导出前列腺癌进展模型。该模型使用来自独立的 545 个原发性肿瘤样本的数据集进行了验证。通过整合转录组和基因组数据,我们的模型提供了对前列腺肿瘤进展的全面了解,确定了关键的信号通路和遗传事件,并揭示了与疾病进展相关的独特转录特征。我们的发现对癌症研究具有重要意义,并有望为前列腺癌的个性化治疗策略提供指导。

意义

我们使用 >1000 个肿瘤和正常组织样本开发并验证了前列腺癌的进展模型。该模型提供了对前列腺肿瘤演进和进展的全面了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1275/11500312/e9646ba0cc38/crc-24-0210_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验