Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China.
Br J Hosp Med (Lond). 2024 Sep 30;85(9):1-18. doi: 10.12968/hmed.2024.0350. Epub 2024 Sep 26.
Immunohistochemistry (IHC) is the main method to detect human epidermal growth factor receptor 2 (Her-2) and Ki-67 expression levels. However, IHC is invasive and cannot reflect their expression status in real-time. This study aimed to build radiomics models based on visceral adipose tissue (VAT)'s F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET/CT) imaging, and to evaluate the relationship between radiomics features of VAT and positive expression of Her-2 and Ki-67 in gastric cancer (GC). Ninety patients with GC were enrolled in this study. F-FDG PET/CT radiomics features were calculated using the PyRadiomics package. Two methods were employed to reduce radiomics features. The machine learning models, logistic regression (LR), and support vector machine (SVM), were constructed and estimated by the receiver operator characteristic (ROC) curve. The correlation of outstanding features with Ki-67 and Her-2 expression status was evaluated. For the Ki-67 set, the area under of the receiver operator characteristic curve (AUC) and accuracy were 0.86 and 0.79 for the LR model and 0.83 and 0.69 for the SVM model. For the Her-2 set, the AUC and accuracy were 0.84 and 0.86 for the LR model and 0.65 and 0.85 for the SVM model. The LR model for Ki-67 exhibited outstanding prediction performance. Three wavelet transform features were correlated with Her-2 expression status ( all < 0.001), and one wavelet transform feature was correlated with the expression status of Ki-67 ( = 0.042). F-FDG PET/CT-based radiomics models of VAT demonstrate good performance in predicting Her-2 and Ki-67 expression status in patients with GC. Radiomics features can be used as imaging biomarkers for GC.
免疫组织化学(IHC)是检测人表皮生长因子受体 2(Her-2)和 Ki-67 表达水平的主要方法。然而,IHC 具有侵袭性,不能实时反映它们的表达状态。本研究旨在构建基于内脏脂肪组织(VAT)的 F-氟脱氧葡萄糖(F-FDG)正电子发射断层扫描/计算机断层扫描(PET/CT)成像的放射组学模型,并评估 VAT 的放射组学特征与胃癌(GC)中 Her-2 和 Ki-67 阳性表达之间的关系。本研究纳入了 90 例 GC 患者。使用 PyRadiomics 包计算 F-FDG PET/CT 放射组学特征。采用两种方法对放射组学特征进行降维处理。构建并通过受试者工作特征(ROC)曲线评估逻辑回归(LR)和支持向量机(SVM)两种机器学习模型。评估突出特征与 Ki-67 和 Her-2 表达状态的相关性。对于 Ki-67 组,LR 模型的 AUC 和准确性分别为 0.86 和 0.79,SVM 模型分别为 0.83 和 0.69。对于 Her-2 组,LR 模型的 AUC 和准确性分别为 0.84 和 0.86,SVM 模型分别为 0.65 和 0.85。Ki-67 的 LR 模型具有出色的预测性能。三个小波变换特征与 Her-2 表达状态相关(均<0.001),一个小波变换特征与 Ki-67 表达状态相关(=0.042)。基于 F-FDG PET/CT 的 VAT 放射组学模型在预测 GC 患者 Her-2 和 Ki-67 表达状态方面具有良好的性能。放射组学特征可用作 GC 的成像生物标志物。