文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 F-FDG PET/CT 的机器学习模型鉴别胰腺肿块型淋巴瘤与胰腺癌的能力的初步研究。

Preliminary study on the ability of the machine learning models based on F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma.

机构信息

Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China; Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, China.

Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, China.

出版信息

Eur J Radiol. 2024 Jul;176:111531. doi: 10.1016/j.ejrad.2024.111531. Epub 2024 May 25.


DOI:10.1016/j.ejrad.2024.111531
PMID:38820949
Abstract

PURPOSE: The objective of this study was to preliminarily assess the ability of metabolic parameters and radiomics derived from F-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) to distinguish mass-forming pancreatic lymphoma from pancreatic carcinoma using machine learning. METHODS: A total of 88 lesions from 86 patients diagnosed as mass-forming pancreatic lymphoma or pancreatic carcinoma were included and randomly divided into a training set and a validation set at a 4-to-1 ratio. The segmentation of regions of interest was performed using ITK-SNAP software, PET metabolic parameters and radiomics features were extracted using 3Dslicer and PYTHON. Following the selection of optimal metabolic parameters and radiomics features, Logistic regression (LR), support vector machine (SVM), and random forest (RF) models were constructed for PET metabolic parameters, CT radiomics, PET radiomics, and PET/CT radiomics. Model performance was assessed in terms of area under the curve (AUC), accuracy, sensitivity, and specificity in both the training and validation sets. RESULTS: Strong discriminative ability observed in all models, with AUC values ranging from 0.727 to 0.978. The highest performance exhibited by the combined PET and CT radiomics features. AUC values for PET/CT radiomics models in the training set were LR 0.994, SVM 0.994, RF 0.989. In the validation set, AUC values were LR 0.909, SVM 0.883, RF 0.844. CONCLUSION: Machine learning models utilizing the metabolic parameters and radiomics of F-FDG PET/CT show promise in distinguishing between pancreatic carcinoma and mass-forming pancreatic lymphoma. Further validation on a larger cohort is necessary before practical implementation in clinical settings.

摘要

目的:本研究旨在初步评估基于 F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)的代谢参数和放射组学特征在利用机器学习区分肿块型胰腺淋巴瘤和胰腺癌方面的能力。

方法:共纳入 86 例经病理证实为肿块型胰腺淋巴瘤或胰腺癌患者的 88 个病灶,采用 4:1 的比例随机分为训练集和验证集。使用 ITK-SNAP 软件进行感兴趣区的分割,使用 3Dslicer 和 PYTHON 提取 PET 代谢参数和放射组学特征。在选择最佳代谢参数和放射组学特征后,构建了基于 LOGISTIC 回归(LR)、支持向量机(SVM)和随机森林(RF)的 PET 代谢参数、CT 放射组学、PET 放射组学和 PET/CT 放射组学模型。在训练集和验证集中,采用曲线下面积(AUC)、准确性、敏感性和特异性评估模型性能。

结果:所有模型均表现出较强的判别能力,AUC 值范围为 0.727~0.978。联合 PET 和 CT 放射组学特征的性能最佳。训练集中,PET/CT 放射组学模型的 LR AUC 值为 0.994,SVM AUC 值为 0.994,RF AUC 值为 0.989。在验证集中,LR AUC 值为 0.909,SVM AUC 值为 0.883,RF AUC 值为 0.844。

结论:基于 F-FDG PET/CT 的代谢参数和放射组学的机器学习模型在鉴别胰腺癌和肿块型胰腺淋巴瘤方面具有一定的应用潜力。在临床实践中应用之前,还需要在更大的队列中进行进一步验证。

相似文献

[1]
Preliminary study on the ability of the machine learning models based on F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma.

Eur J Radiol. 2024-7

[2]
Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in F-FDG PET/CT.

Med Phys. 2019-8-13

[3]
Radiomics based on F-FDG PET/CT could differentiate breast carcinoma from breast lymphoma using machine-learning approach: A preliminary study.

Cancer Med. 2020-1

[4]
Use of radiomics based on F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach.

Eur J Nucl Med Mol Imaging. 2021-8

[5]
Predicting T-Cell Lymphoma in Children From F-FDG PET-CT Imaging With Multiple Machine Learning Models.

J Imaging Inform Med. 2024-6

[6]
Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) to predict preoperative colorectal cancer lymph node metastasis.

Clin Radiol. 2024-9

[7]
Preoperative Prediction of Her-2 and Ki-67 Status in Gastric Cancer Using F-FDG PET/CT Radiomics Features of Visceral Adipose Tissue.

Br J Hosp Med (Lond). 2024-9-30

[8]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[9]
Machine learning approach using F-FDG-PET-radiomic features and the visibility of right ventricle F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis.

Jpn J Radiol. 2024-7

[10]
A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on F-FDG PET/CT images.

Jpn J Radiol. 2023-4

引用本文的文献

[1]
The Role of Artificial Intelligence and Radiomics in the Management of Lymphomas by PET/CT: The Clairvoyance in Clinic.

Cancer Manag Res. 2025-7-19

[2]
Diagnostic Value of F-FDG PET/CT Radiomics in Lymphoma: A Systematic Review and Meta-Analysis.

Technol Cancer Res Treat. 2025

[3]
Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis.

Cancers (Basel). 2024-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索