Suppr超能文献

对金属有机框架衍生钴基纳米催化剂在费托合成中性能的支撑作用。

The support effect on the performance of a MOF-derived Co-based nano-catalyst in Fischer Tropsch synthesis.

作者信息

Safari Yazd Masoud, Motahari Sirous, Rahimpour Mohammad Reza, Froud Moorjani Sadegh, Sobhani Bazghaleh Farshid

机构信息

Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, Tehran, Iran.

Department of Chemical Engineering, Shiraz University, Shiraz, Iran.

出版信息

Nanoscale. 2024 Oct 24;16(41):19422-19444. doi: 10.1039/d4nr02499k.

Abstract

The catalyst plays a central role in the Fischer-Tropsch synthesis (FTS) process, and the choice of catalyst support significantly impacts FTS catalyst performance by enhancing its attributes. In this study, the effects of utilizing various metal oxides-CeO, ZrO, and TiO-on a cobalt-based FTS nanocatalyst are investigated by evaluating the catalyst's reducibility, stability, syngas chemisorption, intermediate species spillover, charge transfer, and metal-support interaction (MSI). This evaluation is conducted both theoretically and experimentally through diverse characterization tests and molecular dynamics (MD) simulations. Characterization tests reveal that the ceria-supported catalyst (Ceria Nano Catalyst, CNC) demonstrates the highest reducibility, stability, CO chemisorption, and spillover, while the zirconia-supported catalyst (Zirconia Nano Catalyst, ZNC) exhibits the highest hydrogen chemisorption and spillover. The MD simulation results align well with these findings; for instance, ZNC has the lowest hydrogen adsorption enthalpy (Δ), whereas CNC has the lowest Δ for CO. Additionally, MD simulations indicate that the titania-supported catalyst (Titania Nano Catalyst, TNC) possesses the highest MSI value, closely resembling that of ZNC, albeit with a minor difference. The TNC catalyst's performance in other tests is also similar to that of ZNC. Finally, FTS performance tests illustrate that the ZNC catalyst achieves the highest CO conversion at 88.1%, while the CNC catalyst presents the lowest CO conversion at 82.2%. Notably, the CNC catalyst showcases the highest durability, with only a 4.4% loss in CO conversion and an 8.55% loss in C yield after 192 h of operation.

摘要

催化剂在费托合成(FTS)过程中起着核心作用,催化剂载体的选择通过增强其属性显著影响FTS催化剂的性能。在本研究中,通过评估钴基FTS纳米催化剂的还原性、稳定性、合成气化学吸附、中间物种溢流、电荷转移和金属-载体相互作用(MSI),研究了使用各种金属氧化物(CeO、ZrO和TiO)对该催化剂的影响。通过各种表征测试和分子动力学(MD)模拟,从理论和实验两方面进行了评估。表征测试表明,二氧化铈负载的催化剂(二氧化铈纳米催化剂,CNC)表现出最高的还原性、稳定性、CO化学吸附和溢流,而氧化锆负载的催化剂(氧化锆纳米催化剂,ZNC)表现出最高的氢化学吸附和溢流。MD模拟结果与这些发现吻合良好;例如,ZNC的氢吸附焓(Δ)最低,而CNC的CO吸附焓最低。此外,MD模拟表明,二氧化钛负载的催化剂(二氧化钛纳米催化剂,TNC)具有最高的MSI值,与ZNC非常相似,尽管存在微小差异。TNC催化剂在其他测试中的性能也与ZNC相似。最后,FTS性能测试表明,ZNC催化剂的CO转化率最高,为88.1%,而CNC催化剂的CO转化率最低,为82.2%。值得注意的是,CNC催化剂表现出最高的耐久性,运行192小时后,CO转化率仅损失4.4%,C产率损失8.55%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验