Abbasi Armin, Towfighi Darian Jafar, Emami Mohammad Javad, Safari Yazd Masoud
Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University P. O. Box: 14115-143 Tehran Iran
RSC Adv. 2025 Aug 26;15(37):30312-30325. doi: 10.1039/d5ra04614a. eCollection 2025 Aug 22.
This study provides novel mechanistic insights into the transformative role of cerium oxide (CeO) incorporation into SAPO-34 for the methanol-to-olefins (MTO) process. By integrating experimental findings with molecular dynamics (MD) simulations, the work elucidates specific pathways through which CeO mitigates coke formation. MD simulations reveal that CeO suppresses the formation of CHO-θ intermediates, key precursors to coke, while enhancing coke removal through improved CO activation and the Boudouard reaction. Catalytic testing corroborates these findings, demonstrating enhanced durability for up to 600 min and a total olefin selectivity of up to 83.9%. Structural and chemical modifications, such as reduced crystallite size, increased mesoporosity, and redistributed acid sites, were characterized using advanced techniques (XRD, FT-IR, FESEM, and NH-TPD). These modifications optimize the balance between weak and strong acid sites, facilitating efficient methanol conversion and olefin production. The integration of mechanistic insights with experimental results underscores the innovative role of CeO in improving SAPO-34's catalytic efficiency, selectivity, and operational stability, establishing SP-Ce as a cutting-edge catalyst for industrial MTO applications.
本研究为氧化铈(CeO)掺入SAPO-34在甲醇制烯烃(MTO)过程中的转化作用提供了新的机理见解。通过将实验结果与分子动力学(MD)模拟相结合,该研究阐明了CeO减轻积炭形成的具体途径。MD模拟表明,CeO抑制了积炭的关键前体CHO-θ中间体的形成,同时通过改善CO活化和布多阿尔反应增强了积炭的去除。催化测试证实了这些发现,表明其耐久性提高至600分钟,总烯烃选择性高达83.9%。使用先进技术(XRD、FT-IR、FESEM和NH-TPD)对结构和化学修饰进行了表征,如微晶尺寸减小、介孔率增加和酸位点重新分布。这些修饰优化了弱酸和强酸位点之间的平衡,促进了甲醇的高效转化和烯烃的生成。机理见解与实验结果的结合突出了CeO在提高SAPO-34催化效率、选择性和操作稳定性方面的创新作用,确立了SP-Ce作为工业MTO应用的前沿催化剂。