Emami Mohammad Javad, Darian Jafar Towfighi, Bazghaleh Farshid Sobhani, Yazd Masoud Safari
Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran.
Sci Rep. 2025 Aug 12;15(1):29468. doi: 10.1038/s41598-025-14220-8.
This study explores the methanol-to-olefins (MTO) performance of three SAPO-34 catalysts: SP (conventional), SPG1 (green, synthesized with okra mucilage as a hard template), and SPG (green, synthesized using a dual-template method with brewed coffee and okra mucilage). The dual-template strategy in SPG promotes the formation of a hierarchical micro-mesoporous structure, resulting in enhanced catalytic behavior. Structural and physicochemical characterizations (XRD, FT-IR, FESEM, EDS, N adsorption-desorption, and NH-TPD) confirm that SPG possesses smaller crystallites, higher mesoporosity, and moderated acidity compared to SP and SPG1. These features contribute to superior total olefin selectivity (89.8% at 240 min), higher ethylene selectivity (53.8%), lower propylene-to-ethylene (P/E) ratio, and improved catalyst stability. Furthermore, SPG exhibits reduced coke formation and better mass transport properties due to its tailored porosity. The utilization of renewable bio-templates not only enhances performance but also aligns with sustainable catalyst design. Overall, the SPG catalyst demonstrates significant potential for efficient and eco-friendly MTO processes.
本研究考察了三种SAPO-34催化剂的甲醇制烯烃(MTO)性能:SP(传统催化剂)、SPG1(绿色催化剂,以秋葵黏液为硬模板合成)和SPG(绿色催化剂,采用冲泡咖啡和秋葵黏液的双模板法合成)。SPG中的双模板策略促进了分级微介孔结构的形成,从而增强了催化性能。结构和物理化学表征(XRD、FT-IR、FESEM、EDS、N吸附-脱附以及NH-TPD)证实,与SP和SPG1相比,SPG具有更小的微晶、更高的介孔率和适中的酸度。这些特性有助于实现卓越的总烯烃选择性(240分钟时为89.8%)、更高的乙烯选择性(53.8%)、更低的丙烯/乙烯(P/E)比以及更好的催化剂稳定性。此外,由于其定制的孔隙率,SPG表现出减少的积炭和更好的传质性能。可再生生物模板的使用不仅提高了性能,还符合可持续催化剂设计的要求。总体而言,SPG催化剂在高效且环保的MTO工艺中显示出巨大潜力。