Wyss Samuel J, Milestone William, Joshi R P, Garner Allen L
IEEE Trans Biomed Eng. 2025 Feb;72(2):768-776. doi: 10.1109/TBME.2024.3471413. Epub 2025 Jan 21.
Electroporation occurs when cells are exposed to an electric pulse of sufficient intensity and pulse duration . Many studies have attempted to develop universal scaling laws to predict membrane pore dynamics for pulsed electric fields (PEFs) of different durations; however, the differences in pore dynamics across these parameters makes this difficult both experimentally and numerically. This study uses the asymptotic Smoluchowski equation (ASME) to quantify the number of pores, average pore radius, and fractional pore area (FPA) during exposure to PEFs with durations from hundreds of picoseconds to a millisecond. We highlight pulse parameter regimes that favor increases in pore radius and number and show that the FPA is dominated by the number of pores formed on the cell membrane. Furthermore, the number of pores and the FPA depend almost entirely on for exceeding the charging time of the cell and both and for shorter than the charging time. Finally, the maps of pore number, average radius, and FPA demonstrate that a universal scaling law for pore dynamics across a wide range of pulse durations does not exist, although certain scaling behaviors may be valuable over narrow regimes. Practically, these maps provide a guideline for selecting PEF parameters to achieve desired membrane permeabilization.
当细胞暴露于具有足够强度和脉冲持续时间的电脉冲时,就会发生电穿孔。许多研究试图制定通用的比例定律,以预测不同持续时间的脉冲电场(PEF)作用下的膜孔动力学;然而,这些参数下孔动力学的差异使得在实验和数值模拟方面都难以做到这一点。本研究使用渐近斯莫卢霍夫斯基方程(ASME)来量化在暴露于持续时间从数百皮秒到一毫秒的PEF期间的孔数量、平均孔半径和分数孔面积(FPA)。我们突出了有利于孔半径和数量增加的脉冲参数范围,并表明FPA由细胞膜上形成的孔数量主导。此外,孔数量和FPA几乎完全取决于超过细胞充电时间的情况,以及短于充电时间的情况。最后,孔数量、平均半径和FPA的图谱表明,尽管在狭窄范围内某些比例行为可能有价值,但不存在适用于广泛脉冲持续时间范围的孔动力学通用比例定律。实际上,这些图谱为选择PEF参数以实现所需的膜透化提供了指导。