Vasilkoski Zlatko, Esser Axel T, Gowrishankar T R, Weaver James C
Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021904. doi: 10.1103/PhysRevE.74.021904. Epub 2006 Aug 3.
The recent applications of nanosecond, megavolt-per-meter electric field pulses to biological systems show striking cellular and subcellular electric field induced effects and revive the interest in the biophysical mechanism of electroporation. We first show that the absolute rate theory, with experimentally based parameter input, is consistent with membrane pore creation on a nanosecond time scale. Secondly we use a Smoluchowski equation-based model to formulate a self-consistent theoretical approach. The analysis is carried out for a planar cell membrane patch exposed to a 10 ns trapezoidal pulse with 1.5 ns rise and fall times. Results demonstrate reversible supraelectroporation behavior in terms of transmembrane voltage, pore density, membrane conductance, fractional aqueous area, pore distribution, and average pore radius. We further motivate and justify the use of Krassowska's asymptotic electroporation model for analyzing nanosecond pulses, showing that pore creation dominates the electrical response and that pore expansion is a negligible effect on this time scale.
最近将纳秒级、兆伏每米的电场脉冲应用于生物系统,显示出显著的细胞和亚细胞电场诱导效应,并重新引发了人们对电穿孔生物物理机制的兴趣。我们首先表明,基于实验参数输入的绝对速率理论与纳秒时间尺度上的膜孔形成是一致的。其次,我们使用基于斯莫卢霍夫斯基方程的模型来构建一种自洽的理论方法。对暴露于具有1.5纳秒上升和下降时间的10纳秒梯形脉冲的平面细胞膜片进行了分析。结果表明,在跨膜电压、孔密度、膜电导、分数水面积、孔分布和平均孔半径方面存在可逆的超电穿孔行为。我们进一步推动并证明了使用克拉斯索夫斯卡的渐近电穿孔模型来分析纳秒脉冲是合理的,表明孔的形成主导了电响应,并且在这个时间尺度上孔的扩张是一个可忽略的效应。