Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA.
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.203090. Epub 2024 Sep 30.
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
细胞的可塑性随着发育和分化而逐渐下降,但这些过程可以通过使用定义的转录因子将体细胞重编程为诱导多能干细胞(iPSC)来在实验中逆转。在过去的 15 年中,重编程技术的进步使研究人员能够使用患者特异性 iPSC 研究疾病,深入了解细胞身份如何维持,使用各种胚胎模型再现胚胎发生的早期阶段,并在培养细胞和动物中逆转衰老的某些方面。在这里,我们综述并比较了目前可用的重编程方法,包括基于转录因子的方法和基于小分子的方法,以获得具有早期胚胎特征的多能细胞。此外,我们还讨论了我们目前对抵抗重编程的机制及其在细胞身份维持中的作用的理解。最后,我们综述了使用重编程因子使细胞和组织年轻化的最新进展,以及 iPSC 在用于研究植入前发育的新型胚胎模型中的应用。