Suppr超能文献

长链非编码 RNA PVT1 通过 TRIM56 诱导糖尿病肾病足细胞线粒体功能障碍。

LncRNA PVT1 induces mitochondrial dysfunction of podocytes via TRIM56 in diabetic kidney disease.

机构信息

Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.

Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.

出版信息

Cell Death Dis. 2024 Sep 30;15(9):697. doi: 10.1038/s41419-024-07107-5.

Abstract

Mitochondrial dysfunction is a significant contributor to podocyte injury in diabetic kidney disease (DKD). While previous studies have shown that PVT1 might play a vital role in DKD, the precise molecular mechanisms are largely unknown. By analyzing the plasma and kidney tissues of DKD patients, we observed a significant upregulation of PVT1 expression, which exhibited a positive correlation with albumin/creatinine ratios and serum creatinine levels. Then, we generated mice with podocyte-specific deletion of PVT1 (Nphs2-Cre/Pvt1) and confirmed that the deletion of PVT1 suppressed podocyte mitochondrial dysfunction and inflammation in addition to ameliorating diabetes-induced podocyte injury, glomerulopathy, and proteinuria. Subsequently, we cultured podocytes in vitro and observed that PVT1 expression was upregulated under hyperglycemic conditions. Mechanistically, we demonstrated that PVT1 was involved in mitochondrial dysfunction by interacting with TRIM56 post-transcriptionally to modulate the ubiquitination of AMPKα, leading to aberrant mitochondrial biogenesis and fission. Additionally, the release of mtDNA and mtROS from damaged mitochondria triggered inflammation in podocytes. Subsequently, we verified the important role of TRIM56 in vivo by constructing Nphs2-Cre/Trim56 mice, consistently with the results of Nphs2-Cre/Pvt1 mice. Together, our results revealed that upregulation of PVT1 could promote mitochondrial dysfunction and inflammation of podocyte by modulating TRIM56, highlighting a potential novel therapeutic target for DKD.

摘要

线粒体功能障碍是糖尿病肾病(DKD)中足细胞损伤的重要原因。虽然先前的研究表明 PVT1 可能在 DKD 中发挥重要作用,但确切的分子机制尚不清楚。通过分析 DKD 患者的血浆和肾脏组织,我们观察到 PVT1 表达显著上调,且与白蛋白/肌酐比值和血清肌酐水平呈正相关。然后,我们生成了足细胞特异性缺失 PVT1 的小鼠(Nphs2-Cre/Pvt1),并证实缺失 PVT1 可抑制足细胞线粒体功能障碍和炎症,同时改善糖尿病引起的足细胞损伤、肾小球病变和蛋白尿。随后,我们在体外培养足细胞,观察到高糖条件下 PVT1 表达上调。在机制上,我们证明 PVT1 通过与 TRIM56 相互作用参与线粒体功能障碍,从而调节 AMPKα 的泛素化,导致异常的线粒体生物发生和分裂。此外,受损线粒体释放的 mtDNA 和 mtROS 引发足细胞炎症。随后,我们通过构建 Nphs2-Cre/Trim56 小鼠在体内验证了 TRIM56 的重要作用,与 Nphs2-Cre/Pvt1 小鼠的结果一致。总之,我们的研究结果表明,上调 PVT1 可通过调节 TRIM56 促进足细胞线粒体功能障碍和炎症,为 DKD 的治疗提供了一个新的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b1b/11442824/470c4f02e072/41419_2024_7107_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验