Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia.
Sci Rep. 2024 Sep 30;14(1):22649. doi: 10.1038/s41598-024-71626-6.
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence of as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of both and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes after treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
基于脉冲电场 (PEF) 的技术在医学和工业应用中越来越普遍。然而,人们对于 PEF 如何在分子水平上作用于包括蛋白质在内的生物样本缺乏详细的了解。有迹象表明,PEF 可能通过电生成的活性氧物质 (ROS) 作用于生物分子。然而,目前尚不清楚天然存在于生物样本中的抗氧化剂和自由基如何调节这种作用。这种知识上的差距通常是由于传统检测方法的灵敏度不足造成的。为了克服这一限制,我们在这里采用了一种内源性(生物)化学发光传感平台,该平台能够灵敏地检测 PEF 产生的 ROS 和蛋白质中的氧化过程,以检查抗氧化剂和自由基的作用。以牛血清白蛋白 (BSA) 作为模型蛋白,我们发现,在作为氧化剂的存在下,其溶液的化学发光信号大大增强,尤其是在 PEF 处理过程中。相比之下,在抗氧化酶(过氧化氢酶、超氧化物歧化酶)存在的情况下,化学发光信号会降低,表明在 PEF 处理之前、期间和之后, 和电生成的超氧阴离子都参与了氧化报告化学发光信号。我们还进行了额外的生化和生物物理测定,这些测定证实了 BSA 在 处理后发生了结构变化,而 PEF 的影响较小。我们提出了一个方案,描述了从阳极界面电荷转移生成 ROS 到实际光子发射的反应过程。我们工作的结果有助于阐明 PEF 通过电生成的活性氧物质对蛋白质的作用机制,并为 PEF 技术的应用开辟新的途径。开发的化学发光技术能够实现 ROS 与蛋白质之间相互作用的无标记、原位和非破坏性检测。该技术可用于研究其他类生物分子(如脂质、核酸或碳水化合物)的氧化损伤。