Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, P. R. China.
State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China.
Commun Biol. 2024 Oct 1;7(1):1227. doi: 10.1038/s42003-024-06896-x.
The accumulation of α-synuclein induces neuronal loss in midbrain nuclei and leads to the disruption of motor circuits, while the pathology of α-synuclein in cortical regions remains elusive. To better characterize cortical synucleinopathy, here we generate a mouse model with the overexpression of human α-synuclein in the primary motor cortex (M1) of mice. A combination of molecular, in vivo recording, and behavioral approaches reveal that cortical expression of human α-synuclein results in the overexcitation of cortical pyramidal neurons (PNs), which are regulated by the decreased inhibitory inputs from parvalbumin-interneurons (PV-INs) to impair complex motor skill learning. Further mechanistic dissections reveal that human α-synuclein aggregation activates ferroptosis, contributing to PV-IN degeneration and motor circuit dysfunction. Taken together, the current study adds more knowledge to the emerging role and pathogenic mechanism of ferroptosis in neurodegenerative diseases.
α-突触核蛋白的积累会导致中脑核团神经元的丧失,并导致运动回路的中断,而皮质区域的α-突触核蛋白的病理学仍然难以捉摸。为了更好地描述皮质突触核蛋白病,我们在这里生成了一种小鼠模型,该模型在小鼠的主要运动皮层(M1)中过表达人类α-突触核蛋白。分子、体内记录和行为方法的综合应用表明,皮质表达的人类α-突触核蛋白导致皮质锥体神经元(PNs)的过度兴奋,这种兴奋受到来自 parvalbumin-interneurons (PV-INs) 的抑制输入减少的调节,从而损害复杂的运动技能学习。进一步的机制分析表明,人类α-突触核蛋白聚集激活了铁死亡,导致 PV-IN 变性和运动回路功能障碍。总之,本研究为铁死亡在神经退行性疾病中的作用和发病机制提供了更多的认识。