Suppr超能文献

精准 HER2:一种全面的人工智能系统,用于准确且一致地评估浸润性乳腺癌中 HER2 的表达。

Precision HER2: a comprehensive AI system for accurate and consistent evaluation of HER2 expression in invasive breast Cancer.

机构信息

Department of Pathology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, NO.63, Duobao Road, Guangzhou, 510150, China.

Cells Vision (Guangzhou) Medical Technology Inc, Guangzhou, China.

出版信息

BMC Cancer. 2024 Sep 30;24(1):1204. doi: 10.1186/s12885-024-12980-6.

Abstract

BACKGROUND

With the development of novel anti-HER2 targeted drugs, such as ADCs, it has become increasingly important to accurately interpret HER2 expression in breast cancer. Previous studies have demonstrated high intra-observer and inter-observer variabilities in evaluating HER2 staining by human eyes. There exists a strong requirement to develop artificial intelligence (AI) systems to achieve high-precision HER2 expression scoring for better clinical therapy.

METHODS

In the present study, we collected breast cancer tissue samples and stained consecutive sections with anti-Calponin and anti-HER2 antibodies. High-quality digital images were selected from immunohistochemical slides and interpreted as HER2 3+, 2+, 1+, and 0. AI models were trained and assessed using annotated training and testing sets. The AI model was trained to automatically identify ductal carcinoma in situ (DCIS) by Calponin staining and myoepithelial annotation and filter out DCIS components in HER2-stained slides using image-overlapping techniques. Furthermore, we organized two-phase validation studies. In phase one, pathologists interpreted 112 HER2 whole-slide images (WSIs) without AI assistance, whereas in phase two, pathologists read the same slides using the AI system after a washing period of 2 weeks.

RESULTS

Our AI model greatly improved the accuracy of reading (0.902 vs. 0.710). The number of HER2 1 + patients misdiagnosed as HER2 0 was significantly reduced (32/279 vs. 65/279), and they benefitted from ADC drugs. In addition, the AI algorithm improved the intra-group consistency of HER2 readings by pathologists with different years of experience (intra-class correlation coefficient [ICC]: 0.872-0.926 vs. 0.818-0.908), with the improvement most pronounced among junior pathologists (0.885 vs. 0.818).

CONCLUSIONS

We proposed a high-precision AI system to identify and filter out DCIS components and automatically evaluate HER2 expression in invasive breast cancer.

摘要

背景

随着新型抗 HER2 靶向药物(如 ADC 药物)的发展,准确解读乳腺癌中的 HER2 表达变得越来越重要。先前的研究表明,人眼评估 HER2 染色存在较高的观察者内和观察者间变异性。因此,强烈需要开发人工智能(AI)系统,以实现高精度的 HER2 表达评分,从而为更好的临床治疗提供依据。

方法

本研究收集乳腺癌组织样本,并分别用抗钙调蛋白和抗 HER2 抗体进行连续染色。从免疫组化切片中选择高质量的数字图像,并将其解读为 HER2 3+、2+、1+和 0。使用标注的训练集和测试集对 AI 模型进行训练和评估。AI 模型通过钙调蛋白染色和肌上皮注释来自动识别导管原位癌(DCIS),并使用图像重叠技术从 HER2 染色切片中过滤 DCIS 成分。此外,我们还组织了两项验证研究。在第一阶段,病理学家在没有 AI 辅助的情况下解读了 112 张 HER2 全切片图像(WSI),而在第二阶段,病理学家在经过 2 周的洗脱期后,使用 AI 系统阅读相同的切片。

结果

我们的 AI 模型大大提高了读片的准确性(0.902 比 0.710)。将 32 例被误诊为 HER2 0 的 HER2 1+患者数量显著减少(32/279 比 65/279),这些患者受益于 ADC 药物。此外,AI 算法提高了具有不同经验年限的病理学家在 HER2 读片方面的组内一致性(组内相关系数[ICC]:0.872-0.926 比 0.818-0.908),对初级病理学家的改善最为明显(0.885 比 0.818)。

结论

我们提出了一种高精度的 AI 系统,用于识别和过滤 DCIS 成分,并自动评估浸润性乳腺癌中的 HER2 表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf4e/11441240/0564f694d986/12885_2024_12980_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验