Suppr超能文献

用于包容性和准确的生殖健康研究及质量改进的数据集创建和数据清理中的性别与性变量

Sex and Gender Variables in Data Set Creation and Data Cleaning for Inclusive and Accurate Reproductive Health Research and Quality Improvement.

作者信息

Phillippi Julia C, Wiese Andrew, Loch Sarah F, Wei Wei-Qi, Ong Henry H, Gonzales Gilbert, Patrick Stephen W

机构信息

School of Nursing, Vanderbilt University, Nashville, Tennessee.

Vanderbilt Center for Child Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee.

出版信息

J Midwifery Womens Health. 2025 Jan-Feb;70(1):131-136. doi: 10.1111/jmwh.13698. Epub 2024 Sep 30.

Abstract

INTRODUCTION

Existing data is often used for reproductive research and quality improvement. Electronic health records (EHRs) with a single data field for sex and gender conflate sex assigned at birth, genotype, gender identity, and the presence of anatomic tissue and organs. This is problematic for inclusion of transgender and gender-diverse populations in research. This article discusses considerations with a single-item sex and gender variable drawn from EHR records and describes an audit to determine variable validity as a criterion for inclusion or exclusion in perinatal research.

METHODS

Individuals with a live birth at a large academic medical center from 2010 to 2022 were identified via electronic query, and records with male demographic information were reviewed to validate (1) the patient's date of birth and delivery date in the EHR matched the medical record number, (2) male sex and gender demographic information, and (3) male gender terms in EHR notes.

RESULTS

All health records of male birthing individuals (n = 8) had EHR evidence of giving birth within the health system during the timeframe, and the date of birth matched the medical record number of the EHR. All had male gender in the EHR demographic information. Six patients did not have any male gender terms in available EHR notes, only female gender terms. Two records had recent notes using male gender terms.

DISCUSSION

Current EHRs may not have reliable data on the gender and sex of gender-diverse individuals. A single sex and gender variable drawn from EHRs should not be used as inclusion or exclusion criteria for health research or quality improvement without additional record review. EHRs can be updated to collect more data on sex, gender identity, and other relevant variables to improve research and quality improvement.

摘要

引言

现有数据常被用于生殖研究和质量改进。电子健康记录(EHR)中关于性别仅有一个数据字段,它将出生时被指定的性别、基因型、性别认同以及解剖组织和器官的存在混为一谈。这对于在研究中纳入跨性别和性别多样化人群而言存在问题。本文讨论了从EHR记录中提取的单一性别和性别的变量相关考量因素,并描述了一项审核,以确定该变量作为围产期研究纳入或排除标准的有效性。

方法

通过电子查询确定2010年至2022年在一家大型学术医疗中心活产的个体,并审查具有男性人口统计学信息的记录,以验证(1)EHR中的患者出生日期和分娩日期与病历编号匹配,(2)男性性别和性别人口统计学信息,以及(3)EHR记录中的男性性别术语。

结果

所有男性分娩个体(n = 8)的健康记录在该时间段内均有在医疗系统内分娩的EHR证据,且出生日期与EHR的病历编号匹配。所有个体在EHR人口统计学信息中均为男性。六名患者在可用的EHR记录中没有任何男性性别术语,仅有女性性别术语。两份记录最近的记录使用了男性性别术语。

讨论

当前的EHR可能没有关于性别多样化个体的性别和性别的可靠数据。在没有额外记录审查的情况下,从EHR中提取的单一性别和性别变量不应用作健康研究或质量改进的纳入或排除标准。EHR可以更新,以收集更多关于性别、性别认同和其他相关变量的数据,以改善研究和质量改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验