Suppr超能文献

压电增强纳米催化剂通过破坏氧化还原稳态触发中性粒细胞向N1极化以对抗细菌生物膜。

Piezoelectric-Enhanced Nanocatalysts Trigger Neutrophil N1 Polarization against Bacterial Biofilm by Disrupting Redox Homeostasis.

作者信息

Ge Min, Zhu Wanbo, Mei Jiawei, Hu Tingting, Yang Chuang, Lin Han, Shi Jianlin

机构信息

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.

Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.

出版信息

Adv Mater. 2025 Feb;37(6):e2409633. doi: 10.1002/adma.202409633. Epub 2024 Sep 30.

Abstract

Strategies of manipulating redox signaling molecules to inhibit or activate immune signals have revolutionized therapeutics involving reactive oxygen species (ROS). However, certain diseases with dual resistance barriers to the attacks by both ROS and immune cells, such as bacterial biofilm infections of medical implants, are difficult to eradicate by a single exogenous oxidative stimulus due to the diversity and complexity of the redox species involved. Here, this work demonstrates that metal-organic framework (MOF) nanoparticles capable of disrupting the bacterial ROS-defense system can dismantle bacterial redox resistance and induce potent antimicrobial immune responses in a mouse model of surgical implant infection by simultaneously modulating redox homeostasis and initiating neutrophil N1 polarization in the infection microenvironment. Mechanistically, the piezoelectrically enhanced MOF triggers ROS production by tilting the band structure and acts synergistically with the aurintricarboxylic acid loaded within the MOF, which inhibits the activity of the cystathionine γ-cleaving enzyme. This leads to biofilm structure disruption and antigen exposure through homeostatic imbalance and synergistic activation of neutrophil N1 polarization signals. Thus, this study provides an alternative but promising strategy for the treatment of antibiotic-resistant biofilm infections.

摘要

操纵氧化还原信号分子以抑制或激活免疫信号的策略彻底改变了涉及活性氧(ROS)的治疗方法。然而,某些对ROS和免疫细胞攻击具有双重抗性屏障的疾病,如医用植入物的细菌生物膜感染,由于所涉及的氧化还原物质的多样性和复杂性,很难通过单一的外源性氧化刺激来根除。在此,这项工作表明,能够破坏细菌ROS防御系统的金属有机框架(MOF)纳米颗粒可以消除细菌的氧化还原抗性,并通过同时调节氧化还原稳态和在手术植入物感染的小鼠模型中启动中性粒细胞N1极化,诱导强大的抗菌免疫反应。从机制上讲,压电增强的MOF通过倾斜能带结构触发ROS产生,并与负载在MOF内的金精三羧酸协同作用,抑制胱硫醚γ-裂解酶的活性。这通过体内平衡失衡和中性粒细胞N1极化信号的协同激活导致生物膜结构破坏和抗原暴露。因此,本研究为治疗抗生素耐药性生物膜感染提供了一种替代但有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验