Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):20-29. doi: 10.1016/j.jcis.2024.08.148. Epub 2024 Aug 22.
Bacterial biofilms present a profound challenge to global public health, often resulting in persistent and recurrent infections that resist treatment. Chemodynamic therapy (CDT), leveraging the conversion of hydrogen peroxide (HO) to highly reactive hydroxyl radicals (•OH), has shown potential as an antibacterial approach. Nonetheless, CDT struggles to eliminate biofilms due to limited endogenous HO and the protective extracellular polymeric substances (EPS) within biofilms. This study introduces a multifunctional nanoplatform designed to self-supply HO and generate nitric oxide (NO) to overcome these hurdles. The nanoplatform comprises calcium peroxide (CaO) for sustained HO production, a copper-based metal-organic framework (HKUST-1) encapsulating CaO, and l-arginine (l-Arg) as a natural NO donor. When exposed to the acidic microenvironment within biofilms, the HKUST-1 layer decomposes, releasing Cu ions and l-Arg, and exposing the CaO core to initiate a cascade of reactions producing reactive species such as HO, •OH, and superoxide anions (•O). Subsequently, HO catalyzes l-Arg to produce NO, which disperses the biofilm and reacts with •O to form peroxynitrite, synergistically eradicating bacteria with •OH. In vitro assays demonstrated the nanoplatform's remarkable antibiofilm efficacy against both Gram-positive Methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, significantly reducing bacterial viability and EPS content. In vivo mouse model experiments validated the nanoplatform's effectiveness in eliminating biofilms and promoting infected wound healing without adverse effects. This study represents a breakthrough in overcoming traditional CDT limitations by integrating self-supplied HO with NO's biofilm-disrupting capabilities, offering a promising therapeutic strategy for biofilm-associated infection.
细菌生物膜对全球公共健康构成了深远的挑战,常常导致持续和反复的感染,难以治疗。化学动力学疗法(CDT)利用过氧化氢(HO)转化为高反应性的羟基自由基(•OH),已显示出作为一种抗菌方法的潜力。然而,CDT 由于生物膜内有限的内源性 HO 和保护性细胞外聚合物物质(EPS),难以消除生物膜。本研究介绍了一种多功能纳米平台,旨在自我供应 HO 并生成一氧化氮(NO)以克服这些障碍。该纳米平台包括过氧化钙(CaO)以持续产生 HO、包封 CaO 的基于铜的金属有机骨架(HKUST-1)和作为天然 NO 供体的 l-精氨酸(l-Arg)。当暴露于生物膜内的酸性微环境中时,HKUST-1 层分解,释放出 Cu 离子和 l-Arg,并使 CaO 核心暴露出来,引发一系列反应,产生 HO、•OH 和超氧阴离子(•O)等活性物质。随后,HO 催化 l-Arg 生成 NO,NO 分散生物膜并与•O 反应形成过氧亚硝酸盐,与•OH 协同消灭细菌。体外实验表明,该纳米平台对革兰氏阳性耐甲氧西林金黄色葡萄球菌和革兰氏阴性铜绿假单胞菌的抗生物膜效果显著,显著降低了细菌活力和 EPS 含量。体内小鼠模型实验验证了纳米平台在消除生物膜和促进感染性伤口愈合方面的有效性,而没有不良反应。本研究通过整合自我供应的 HO 与 NO 的生物膜破坏能力,克服了传统 CDT 局限性,为生物膜相关感染提供了一种有前途的治疗策略。