Suppr超能文献

转录组数据中检测差异节律性算法的比较研究

A Comparative Study of Algorithms Detecting Differential Rhythmicity in Transcriptomic Data.

作者信息

Miao Lin, Weidemann Douglas E, Ngo Katherine, Unruh Benjamin A, Kojima Shihoko

机构信息

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.

Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.

出版信息

Bioinform Biol Insights. 2024 Sep 24;18:11779322241281188. doi: 10.1177/11779322241281188. eCollection 2024.

Abstract

Rhythmic transcripts play pivotal roles in driving the daily oscillations of various biological processes. Genetic or environmental disruptions can lead to alterations in the rhythmicity of transcripts, ultimately impacting downstream circadian outputs, including metabolic processes and even behavior. To statistically compare the differences in transcript rhythms between 2 or more conditions, several algorithms have been developed to analyze circadian transcriptomic data, each with distinct features. In this study, we compared the performance of 7 algorithms that were specifically designed to detect differential rhythmicity (DODR, LimoRhyde, CircaCompare, compareRhythms, diffCircadian, dryR, and RepeatedCircadian). We found that even when applying the same statistical threshold, these algorithms yielded varying numbers of differentially rhythmic transcripts, most likely because each algorithm defines rhythmic and differentially rhythmic transcripts differently. Nevertheless, the output for the differential phase and amplitude were identical between dryR and compareRhyhms, and diffCircadian and CircaCompare, while the output from LimoRhyde2 was highly correlated with that from diffCircadian and CircaCompare. Because each algorithm has unique requirements for input data and reports different information as an output, it is crucial to ensure the compatibility of input data with the chosen algorithm and assess whether the algorithm's output fits the user's needs when selecting an algorithm for analysis.

摘要

节律性转录本在驱动各种生物过程的日常振荡中发挥着关键作用。遗传或环境干扰可导致转录本节律性的改变,最终影响下游的昼夜节律输出,包括代谢过程甚至行为。为了统计学比较两种或更多条件下转录本节律的差异,已经开发了几种算法来分析昼夜节律转录组数据,每种算法都有独特的特点。在本研究中,我们比较了7种专门设计用于检测差异节律性的算法(DODR、LimoRhyde、CircaCompare、compareRhythms、diffCircadian、dryR和RepeatedCircadian)的性能。我们发现,即使应用相同的统计阈值,这些算法产生的差异节律性转录本数量也不同,这很可能是因为每种算法对节律性和差异节律性转录本的定义不同。然而,dryR和compareRhyhms之间、diffCircadian和CircaCompare之间的差异相位和振幅输出是相同的,而LimoRhyde2的输出与diffCircadian和CircaCompare的输出高度相关。由于每种算法对输入数据都有独特的要求,并且作为输出报告不同的信息,因此在选择分析算法时,确保输入数据与所选算法的兼容性并评估算法的输出是否符合用户需求至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d583/11440551/948f068d03ef/10.1177_11779322241281188-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验