Technical University of Darmstadt, Darmstadt, Germany.
Center for Mind, Brain and Behavior (CMBB) Universities of Marburg, Giessen and Darmstadt, Marburg, Giessen and Darmstadt, Germany.
PeerJ. 2024 Sep 27;12:e18059. doi: 10.7717/peerj.18059. eCollection 2024.
Mooney images can contribute to our understanding of the processes involved in visual perception, because they allow a dissociation between image content and image understanding. Mooney images are generated by first smoothing and subsequently thresholding an image. In most previous studies this was performed manually, using subjective criteria for generation. This manual process could eventually be avoided by using automatic generation techniques. The field of computer image processing offers numerous techniques for image thresholding, but these are only rarely used to create Mooney images. Furthermore, there is little research on the perceptual effects of smoothing and thresholding. Therefore, in this study we investigated how the choice of different thresholding techniques and amount of smoothing affects the interpretability of Mooney images for human participants. We generated Mooney images using four different thresholding techniques, selected to represent various global thresholding methods, and, in a second experiment, parametrically varied the level of smoothing. Participants identified the concepts shown in Mooney images and rated their interpretability. Although the techniques generate physically-different Mooney images, identification performance and subjective ratings were similar across the different techniques. This indicates that finding the perfect threshold in the process of generating Mooney images is not critical for Mooney image interpretability, at least for globally-applied thresholds. The degree of smoothing applied before thresholding, on the other hand, requires more tuning depending on the noise of the original image and the desired interpretability of the resulting Mooney image. Future work in automatic Mooney image generation should pursue local thresholding techniques, where different thresholds are applied to image regions depending on the local image content.
蒙尼图像可以帮助我们理解视觉感知过程,因为它们可以将图像内容和图像理解分离开来。蒙尼图像是通过先对图像进行平滑处理,然后再进行阈值处理来生成的。在大多数先前的研究中,这是手动完成的,使用的是生成的主观标准。通过使用自动生成技术,这个手动过程最终可以避免。计算机图像处理领域提供了许多用于图像阈值处理的技术,但这些技术很少用于创建蒙尼图像。此外,关于平滑和阈值处理的感知效果的研究也很少。因此,在这项研究中,我们研究了不同的阈值处理技术和平滑程度的选择如何影响人类参与者对蒙尼图像的可理解性。我们使用四种不同的阈值处理技术生成蒙尼图像,这些技术代表了各种全局阈值处理方法,并且在第二个实验中,我们参数化地改变了平滑程度。参与者识别蒙尼图像中显示的概念,并对其可理解性进行评分。尽管这些技术生成的蒙尼图像在物理上有所不同,但不同技术的识别性能和主观评分相似。这表明,在生成蒙尼图像的过程中找到完美的阈值对于蒙尼图像的可理解性并不关键,至少对于全局应用的阈值是这样。另一方面,在进行阈值处理之前应用的平滑程度需要根据原始图像的噪声和所需的蒙尼图像的可理解性进行更多的调整。在自动蒙尼图像生成的未来工作中,应该追求局部阈值处理技术,其中根据图像的局部内容,为图像区域应用不同的阈值。