Suppr超能文献

分子模拟揭示 SARS-CoV-2 变体与强效纳米抗体复合物的纳米力学足迹。

Nanomechanical footprint of SARS-CoV-2 variants in complex with a potent nanobody by molecular simulations.

机构信息

Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.

Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland.

出版信息

Nanoscale. 2024 Oct 17;16(40):18824-18834. doi: 10.1039/d4nr02074j.

Abstract

Rational design of novel antibody therapeutics against viral infections such as coronavirus relies on surface complementarity and high affinity for their effectiveness. Here, we explore an additional property of protein complexes, the intrinsic mechanical stability, in SARS-CoV-2 variants when complexed with a potent antibody. In this study, we utilized a recent implementation of the GōMartini 3 approach to investigate large conformational changes in protein complexes with a focus on the mechanostability of the receptor-binding domain (RBD) from WT, Alpha, Delta, and XBB.1.5 variants in complex with the H11-H4 nanobody. The analysis revealed moderate differences in mechanical stability among these variants. Also, we identified crucial residues in both the RBD and certain protein segments in the nanobody that contribute to this property. By performing pulling simulations and monitoring the presence of specific native and non-native contacts across the protein complex interface, we provided mechanistic insights into the dissociation process. Force-displacement profiles indicate a tensile force clamp mechanism associated with the type of protein complex. Our computational approach not only highlights the key mechanostable interactions that are necessary to maintain overall stability, but it also paves the way for the rational design of potent antibodies that are mechanostable and effective against emergent SARS-CoV-2 variants.

摘要

针对冠状病毒等病毒感染的新型抗体治疗药物的合理设计依赖于其与表面的互补性和对其有效性的高亲和力。在这里,我们探索了蛋白质复合物的另一个特性,即与有效的抗体结合时,SARS-CoV-2 变体的固有机械稳定性。在这项研究中,我们利用最近实施的 GōMartini 3 方法来研究蛋白质复合物的大构象变化,重点关注与 WT、Alpha、Delta 和 XBB.1.5 变体的受体结合域 (RBD) 与 H11-H4 纳米抗体复合物的机械稳定性。分析表明,这些变体之间的机械稳定性存在中等差异。此外,我们还确定了 RBD 中和纳米抗体中某些蛋白质片段中的关键残基,这些残基对该特性有贡献。通过进行拉伸模拟并监测蛋白质复合物界面上特定天然和非天然接触的存在,我们提供了对解离过程的机械见解。力-位移曲线表明与蛋白质复合物类型相关的张力夹具机制。我们的计算方法不仅突出了维持整体稳定性所需的关键机械稳定相互作用,而且为设计针对新兴 SARS-CoV-2 变体的机械稳定和有效的有效抗体铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验