Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.
Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
Cytometry A. 2024 Nov;105(11):816-828. doi: 10.1002/cyto.a.24896. Epub 2024 Oct 1.
Imaging flow cytometry (IFC) provides single-cell imaging data at a high acquisition rate. It is increasingly used in image-based profiling experiments consisting of hundreds of thousands of multi-channel images of cells. Currently available software solutions for processing microscopy data can provide good results in downstream analysis, but are limited in efficiency and scalability, and often ill-adapted to IFC data. In this work, we propose Scalable Cytometry Image Processing (SCIP), a Python software that efficiently processes images from IFC and standard microscopy datasets. We also propose a file format for efficiently storing IFC data. We showcase our contributions on two large-scale microscopy and one IFC datasets, all of which are publicly available. Our results show that SCIP can extract the same kind of information as other tools, in a much shorter time and in a more scalable manner.
成像流式细胞术(IFC)以高采集率提供单细胞成像数据。它越来越多地用于基于图像的分析实验,这些实验包含数十万张细胞的多通道图像。目前用于处理显微镜数据的可用软件解决方案可在下游分析中提供良好的结果,但在效率和可扩展性方面存在限制,并且通常不适应 IFC 数据。在这项工作中,我们提出了可扩展的细胞术图像处理(SCIP),这是一个 Python 软件,可高效处理 IFC 和标准显微镜数据集的图像。我们还提出了一种用于高效存储 IFC 数据的文件格式。我们在两个大型显微镜数据集和一个 IFC 数据集上展示了我们的贡献,所有这些数据集都是公开可用的。我们的结果表明,SCIP 可以在更短的时间内以更具可扩展性的方式提取与其他工具相同的信息。