State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
J Phys Chem B. 2024 Oct 10;128(40):9785-9797. doi: 10.1021/acs.jpcb.4c05025. Epub 2024 Oct 1.
The internalization of nanoparticles is of great significance for their biological applications. Clathrin-mediated endocytosis (CME) is one of the main endocytic pathways. However, there is still a lack of a fundamental understanding regarding the internalization of multiple nanoparticles via CME. Therefore, in this study, we conducted computational investigations to uncover detailed molecular mechanisms and kinetic pathways for differently shaped nanoparticles in the presence of clathrin. Particular focus is given to understanding the CME of multiple-nanoparticle systems. We found that unlike receptor-mediated endocytosis, multiple nanoparticles did not get cooperatively wrapped by the membrane but tended to undergo independent endocytosis in the presence of clathrin. To further investigate the endocytosis mechanism, we studied the effects of clathrins, nanoparticle shape, nanoparticle size, nanoparticle arrangement, and membrane surface tension. The self-assembly of clathrin prefers independent endocytosis for multiple nanoparticles. Besides, the cooperative behavior is weak with increasing nanoparticle-shape anisotropy. However, when the membrane tension is reduced, the endocytosis pathway for multiple nanoparticles is cooperative endocytosis. Moreover, we found that the self-assembly of clathrins reduces the critical size of nanoparticles to undergo cooperative wrapping by the cell membrane. Our results provide valuable insights into the molecular mechanisms of multiple nanoparticles through CME and offer useful guidance for the design of nanoparticles as drug/gene delivery carriers.
纳米粒子的内化对于它们的生物应用非常重要。网格蛋白介导的内吞作用(CME)是主要的内吞途径之一。然而,对于通过 CME 内化多个纳米粒子的机制仍缺乏基本的了解。因此,在这项研究中,我们进行了计算研究,以揭示网格蛋白存在下不同形状纳米粒子的详细分子机制和动力学途径。特别关注理解多纳米粒子系统的 CME。我们发现,与受体介导的内吞作用不同,多个纳米粒子不会被膜协同包裹,而是倾向于在网格蛋白存在下进行独立的内吞作用。为了进一步研究内吞作用机制,我们研究了网格蛋白、纳米粒子形状、纳米粒子尺寸、纳米粒子排列和膜表面张力的影响。网格蛋白的自组装倾向于对多个纳米粒子进行独立的内吞作用。此外,随着纳米粒子形状各向异性的增加,协同行为变弱。然而,当膜张力降低时,多个纳米粒子的内吞作用途径是协同内吞作用。此外,我们发现网格蛋白的自组装降低了纳米粒子经历细胞膜协同包裹的临界尺寸。我们的结果为通过 CME 内化多个纳米粒子的分子机制提供了有价值的见解,并为作为药物/基因递送载体的纳米粒子的设计提供了有用的指导。